
Identifying Gene and Protein Mentions in Text
Using Conditional Random Fields

Ryan McDonald and Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104

{ryantm,pereira}@cis.upenn.edu

1 Introduction

Applying information extraction techniques in the
biological domain has been a growing research area
over the past few years. Numerous large scale copora
have been developed [10] or are being developed [4]
to facilitate this process. Typically, the first step
in most information extraction systems is to iden-
tify the named entities that are relevant to the con-
cepts, relations and events described in the text. In
molecular biology, named entities related to genes,
proteins or other biologically-active molecules are es-
pecially important.

Approaches to biological entity detection span a
broad range from linguistic rule-based [9] to pure
machine learning [3], as well as hybrids such as
Tanabe and Wilbur’s [12] that integrate an initial
stochastic part-of-speech tagger that identifies can-
didate genes using a special ‘GENE’ part-of-speech
and with post-processing stage that uses a series of
rules based on collected lexicons.

In this paper we present a method for identify-
ing gene and protein mentions in text with condi-
tional random fields (CRFs) [5], which are discussed
in Section 2. Narayanaswamy et al. [9] suggest that
rule-based systems make decisions on sets of textual
indicator features and that these features may eas-
ily be exploited by supervised statistical approaches.
Our model does just this by incorporating many of
the post-processing steps of Tanabe and Wilbur [12]
into features of our model. This aspect of the sys-
tem will be discussed in Section 3. Results on the
development and evaluation data are presented in
Section 4. The model we present is general in that it
may be extended to various other biological entities,
providing the appropriate lexicons are available.

The training, development and evaluation data
for our system was provided by the organizers of
BioCreative 2004 [1].

2 Conditional Random Fields

The task of identifying gene mentions in text can
be represented as a tagging task, in which each text
token is labeled with a tag indicating whether the
token begins, continues, or is outside of a gene men-

tion. Conditional random fields are probabilistic
tagging models that give the conditional probabil-
ity of a possible tag sequence t = t1, . . . tn given the
input token sequence o = o1, . . . on:

P (t|o) =
e

P

j

P

i
λifi(sj ,o,j)

Z(o)

In this definition, each fi is a function that mea-
sures a feature relating the state sj at position
j with the input sequence around position j, λj

is the corresponding feature weight, and the state
sj = (tj−k+1, . . . , tj) encodes the tag k-gram ending
at position j, for a suitable choice of k. We use k = 3
in this work, but some feature functions may ignore
tj−2 or tj−2 and tj−1 to provide a form of back-off
for rarely occurring tag trigrams or bigrams.

We represent the input text with a sequence of sets
of predicates. The jth set contains those predicates
that hold of the jth token. For instance, if token j is
the word “Kinase”, then the jth set might contain
the predicates WORD=kinase and WordIsCapital-
ized, among others. The tag sequence uses the possi-
ble tags B-GENE, I-GENE and O, representing the
beginning, inside and outside of a gene mention re-
spectively. As noted before, each feature function
relates input properties and a k-gram of tags. We
use only binary features, for instance:

fi(s,o, j) =

8

<

:

1 if ‘WORD=kinase’ ∈ oj ,

tag
−1(s) = B-GENE, tag0(s) = I-GENE;

0 otherwise.

where tag
−k((. . . , tj−k , . . .)) = tj−k.

The weight λi for each feature should ideally be
highly positive for features that are on in correct tag-
gings, highly negative for features that tend be off in
correct taggings, and around zero for uninformative
features. To achieve this, the model is trained so
that the weights maximize the log-likelihood of the
training data, T :

L(T ) =
X

(t,o)∈T

log P (t|o)



subject to a Gaussian penalty (σ = 1.0) on weights
to control overfitting [2]. This is a standard ap-
proach for log-linear models like the present one;
many iterative algorithms are known for finding the
optimal weight setting [6]. Once the optimal weight
setting is found, then one can find the tag sequence
with highest probability for an unlabeled input se-
quence using Viterbi’s algorithm [5].

Our system uses the MALLET [8] implementation
of CRFs trained with limited-memory quasi-Newton
[11]. Furthermore, the model we use is trained using
feature induction [7] which is described in greater
detail in the next section.

3 Feature Set

Feature-based models like CRFs are attractive be-
cause they reduce each problem to that of finding
a feature set that adequately represents the task at
hand. As a good starting point, our feature set con-
sisted of word as well as orthographic features (out-
lined in table 1). We then added character-n-gram
features for 2 ≤ n ≤ 4. These features help the sys-
tem recognize informative substrings (e.g. ‘homeo’
or ‘ase’) in words that were not seen in training. In
addition to the character-n-gram features, we also
included word prefix and suffix features of the same
lengths. This may seem redundant, but prefix and
suffix features also take into account the position of
the n-gram in the word. We include features that
indicate whether the current token occurs within
brackets or inside quotations. Finally, we made the
window for all features {-1,1}. This means that fea-
tures for token j would contain predicates about to-
kens j-1 and j+1.

Even with this very simple set of general features,
performance on the development data was reason-
able (see Section 4). In order to add expert knowl-
edge to the model, we focused our attention on the
gene and protein tagger ABGene [12]. ABGene is
a hybrid model that uses a statistical part-of-speech
tagger to identify candidate genes by labeling them
with a special part-of-speech ‘GENE’. Once the can-
didate genes are found a series of post processing
rules are initiated to improve the results. Specifi-
cally, ABGene uses a set of lexicons to remove false
positives and recover false negatives. These include
general biological terms, amino acids, restriction en-
zymes, cell lines, organism names and non-biological
terms meant to identify tokens that have been mis-
labeled as ‘GENE’. To recover false negatives, AB-
Gene utilizes large gene lexicons coupled with con-
text lists to identify possible mentions. Another
post-processing step identifies tokens that contain
low frequency trigrams, compiled from MEDLINE,
to identify possible gene candidates, since gene and
proteins names often contain unusual character tri-
grams.

A straightforward method of integrating these
post processing steps into our model is to create
predicates indicating whether a token occurs in a
one of the ABGene lexicons. For multi-token en-
tries, we required that all tokens of the entry were
matched. These features were also applied over a
window of {-1,1}. Section 4 discusses the effect of
adding these lexicons to our system.

3.1 Feature Induction

So far we have only described features over a sin-
gle predicate. Often it is useful to create features
based on the conjunction of several predicates. For
instance, the following feature would be useful:

fk(s, o, j) =

8

>

<

>

:

1 if ‘WORD=p-53
′
∈ oj ,

‘WORD=mutant’ ∈ oj+1

tag0(s) = B-GENE;
0 otherwise.

This is because the token p-53 can either be in a
gene mention (when it is followed by the word ‘mu-
tant’) or be in a mutation mention (when it is fol-
lowed by the word ‘mutations’). Hence the following
feature would also be useful:

fk(s, o, j) =

8

>

<

>

:

1 if ‘WORD=p-53’ ∈ oj ,

‘WORD=mutations’ ∈ oj+1,

tag0(s) = O;
0 otherwise.

The system already has tens of thousands of sin-
gleton features, making it infeasible to create all such
conjunctions. Even if it were computationally feasi-
ble to train a model with all conjunctions, it would
be difficult to gather sufficient statistics on them
since most conjunctions occur rarely if ever.

To solve this problem, McCallum [7] describes an
implementation of feature induction for CRFs that
automatically creates a set of useful features and fea-
ture conjunctions. Feature induction works by iter-
atively considering sets of candidate singleton and
conjunction features that are created from the ini-
tially defined set of singleton features as well as the
set of current model features. The log-likelihood
gain on the training data is then measured for each
feature individually. Only those candidates causing
the highest gain are included into the current set of
model features. Our experiments showed that us-
ing feature induction improved performace over just
using all defined singleton features (Section 4).

4 Results and Discussion

Our system was initially trained on 7500 anno-
tated MEDLINE sentences with a development set
of 2500 sentences. Training with feature induc-
tion took approximately 22 hours, which is substan-
tially longer than training without feature induction.
Once trained, the system can annotate sentences in
less than a second. For evaluation, we added the



Orthographic Feature Reg. Exp.
Init Caps [A-Z].*

Init Caps Alpha [A-Z][a-z]*
All Caps [A-Z]+
Caps Mix [A-Za-z]+
Has Digit .*[0-9].*

Single Digit [0-9]
Double Digit [0-9][0-9]

Natural Number [0-9]+
Real Number [-0-9]+[.,]+[0-9.,]+
Alpha-Num [A-Za-z0-9]+

Roman [ivxdlcm]+ or [IVXDLCM]+
Has Dash .*-.*
Init Dash -.*
End Dash .*-

Punctuation [,.;:?!-+‘”’]

Table 1: Orthographic features.

System Precision Recall F-Measure

No Lexicons 0.830 0.773 0.801

Lexicons 0.864 0.787 0.824

Table 2: System performance on eval. data.

development set to the training data and evaluated
on 5000 new unannotated sentences. The results are
shown in table 2. Entities were correctly identified
by the system if and only if all and only the tokens
of the entity were correctly detected.

Adding the ABGene lexicons made a significant
improvement to both precision and recall. This is a
very good indicator that additional domain knowl-
edge may help to further improve the accuracy of
the system. To determine which lexicons gave the
best performance, we conducted experiments exam-
ining the effect of adding each type of lexicon indi-
vidually to the model and tested the model on the
development data. These results are outlined in ta-
ble 3. Each list made a small improvement to the
overall accuracy of the system, with the gene lexi-
con contributing the largest improvement. Table 3
also shows the performance of the system without
lexicons and feature induction.

Overall, our experiments show that CRF models
with carefully designed features can identify gene
and protein mentions with fairly high accuracy even
without features containing domain specific knowl-
edge. However, such features, which in our case
take the form of lexicon membership, can lead to
improved system performance.

Acknowledgments

The authors would like to thank our collaborators Mark

Liberman, Andy Schein, Pete White and Scott Winters for

useful discussions and suggestions. We would also like to

thank Lorraine Tanabe for making the ABGene lexicons avail-

able to us. Finally we are particularly appreciative of Andrew

McCallum for providing us with an early version of MAL-

LET.

System Precision Recall F-Measure

No Lex, No Feat. Ind. 0.793 0.731 0.761

No Lexicons 0.807 0.744 0.774

Trigrams 0.811 0.759 0.784

Non-gene Lexicons 0.818 0.743 0.778

Gene Lexicons 0.812 0.775 0.793

All Lexicons 0.817 0.782 0.799

Table 3: Effects of feature induction and lexicons on
system performance for devel. data.

References
[1] A critical assessment of text mining methods in

molecular biology workshop, 2004.
http://www.pdg.cnb.uam.es/BioLINK/workshop BioCreative 04/

[2] S. F. Chen and R. Rosenfeld. A Gaussian prior for
smoothing maximum entropy models. Technical Re-
port CMU-CS-99- 108, Carnegie Mellon University,
1999.

[3] J. Kazama, T. Makino, Y. Ohta and J. Tsujii. Tun-
ing support vector machines for biomedical named
entity recognition. In the Proceedings of the Natu-

ral Language Processing in the Biomedical Domain,
ACL, 2002.

[4] S. Kulick, A. Bies, M. Liberman, M. Mandel, R.
McDonald, M. Palmer, E. Pancoast, A. Schein, L.
Ungar, P. White and S. Winters. Integrated anno-
tation for biomedical information extraction. To ap-
pear at Biolink 2004, 2004.

[5] John Lafferty, Andrew McCallum, and Fernando
Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
In Proceedings of ICML-01, 2001.

[6] R. Malouf. A comparison of algorithms for maxi-
mum entropy parameter estimation. In Proceedings
of the Sixth Conference on Natural Language Learn-

ing, 2002.

[7] Andrew McCallum. Efficiently inducing features of
conditional random fields. Conference on Uncer-

tainty in Artificial Intelligence, 2003.

[8] Andrew McCallum. “MALLET: A Ma-
chine Learning for Language Toolkit.”
http://mallet.cs.umass.edu 2002.

[9] M. Narayanaswamy, K. E. Ravikumar, K. Vijay-
Shanker. A biological named entity recognizer. Pa-

cific Symposium on Biocomputing, 2003.

[10] T. Ohta, Y. Tateisi, J. Kim, S. Lee and J. Tsujii.
GENIA corpus: A semantically annotated corpus in
molecular biology domain. In the Proceedings of the

ninth International Conference on Intelligent Sys-

tems for Molecular Biology, 2001.

[11] F. Sha and F. Pereira. Shallow parsing with con-
ditional random fields. In Proceedings of HLT-

NAACL 2003, pages 213–220. Association for Com-
putational Linguistics, 2003.

[12] L. Tanabe, W. J. Wilbur. Tagging gene and protein
names in biomedical text. Bioinformatics 18(8),
2002.


