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Abstract

We propose a simple training regime that can
improve the extrinsic performance of a parser,
given only a corpus of sentences and a way
to automatically evaluate the extrinsic quality
of a candidate parse. We apply our method
to train parsers that excel when used as part
of a reordering component in a statistical ma-
chine translation system. We use a corpus of
weakly-labeled reference reorderings to guide
parser training. Our best parsers contribute
significant improvements in subjective trans-
lation quality while their intrinsic attachment
scores typically regress.

1 Introduction

The field of syntactic parsing has received a great
deal of attention and progress since the creation of
the Penn Treebank (Marcus et al., 1993; Collins,
1997; Charniak, 2000; McDonald et al., 2005;
Petrov et al., 2006; Nivre, 2008). A common—
and valid—criticism, however, is that parsers typi-
cally get evaluated only on Section 23 of the Wall
Street Journal portion of the Penn Treebank. This
is problematic for many reasons. As previously ob-
served, this test set comes from a very narrow do-
main that does not necessarily reflect parser perfor-
mance on text coming from more varied domains
(Gildea, 2001), especially web text (Foster, 2010).
There is also evidence that after so much repeated
testing, parsers are indirectly over-fitting to this set
(Petrov and Klein, 2007). Furthermore, parsing was
never meant as a stand-alone task, but is rather a

means to an end, towards the goal of building sys-
tems that can process natural language input.

This is not to say that parsers are not used in larger
systems. All to the contrary, as parsing technology
has become more mature, parsers have become ef-
ficient and accurate enough to be useful in many
natural language processing systems, most notably
in machine translation (Yamada and Knight, 2001;
Galley et al., 2004; Xu et al., 2009). While it has
been repeatedly shown that using a parser can bring
net gains on downstream application quality, it is of-
ten unclear how much intrinsic parsing accuracy ac-
tually matters.

In this paper we try to shed some light on this is-
sue by comparing different parsers in the context of
machine translation (MT). We present experiments
on translation from English to three Subject-Object-
Verb (SOV) languages,1 because those require ex-
tensive syntactic reordering to produce grammatical
translations. We evaluate parse quality on a num-
ber of extrinsic metrics, including word reordering
accuracy, BLEU score and a human evaluation of fi-
nal translation quality. We show that while there is
a good correlation between those extrinsic metrics,
parsing quality as measured on the Penn Treebank
is not a good indicator of the final downstream ap-
plication quality. Since the word reordering metric
can be computed efficiently offline (i.e. without the
use of the final MT system), we then propose to tune
parsers specifically for that metric, with the goal of
improving the performance of the overall system.

To this end we propose a simple training regime

1We experiment with Japanese, Korean and Turkish, but
there is nothing language specific in our approach.



which we refer to as targeted self-training (Sec-
tion 2). Similar to self-training, a baseline model
is used to produce predictions on an unlabeled data
set. However, rather than directly training on the
output of the baseline model, we generate a list of
hypotheses and use an external signal to select the
best candidate. The selected parse trees are added
to the training data and the model is then retrained.
The experiments in Section 5 show that this simple
procedure noticeably improves our parsers for the
task at hand, resulting in significant improvements
in downstream translation quality, as measured in a
human evaluation on web text.

This idea is similar in vein to McClosky. et al.
(2006) and Petrov et al. (2010), except that we use an
extrinsic quality metric instead of a second parsing
model for making the selection. It is also similar to
Burkett and Klein (2008) and Burkett et al. (2010),
but again avoiding the added complexity introduced
by the use of additional (bilingual) models for can-
didate selection.

It should be noted that our extrinsic metric is com-
puted from data that has been manually annotated
with reference word reorderings. Details of the re-
ordering metric and the annotated data we used are
given in Sections 3 and 4. While this annotation re-
quires some effort, such annotations are much easier
to obtain than full parse trees. In our experiments
in Section 6 we show that we can obtain similar
improvements on downstream translation quality by
targeted self-training with weakly labeled data (in
form of word reorderings), as with training on the
fully labeled data (with full syntactic parse trees).

2 Targeted Self-Training

Our technique for retraining a baseline parser is an
extension of self-training. In standard parser self-
training, one uses the baseline parsing model to
parse a corpus of sentences, and then adds the 1-best
output of the baseline parser to the training data. To
target the self-training, we introduce an additional
step, given as Algorithm 1. Instead of taking the 1-
best parse, we produce a ranked n-best list of predic-
tions and select the parser which gives the best score
according to an external evaluation function. That
is, instead of relying on the intrinsic model score,
we use an extrinsic score to select the parse towards

Algorithm 1 Select parse that maximizes an extrin-
sic metric.
Input: baseline parser B
Input: sentence S
Input: function COMPUTEEXTRINSIC(parse P )
Output: a parse for the input sentence
Pn = {P1, . . . , Pn} ← n-best parses of S by B
maxScore = 0
bestParse = ∅
for k = 1 to n do

extrinsicScore = COMPUTEEXTRINSIC(Pk)
if extrinsicScore > maxScore then

maxScore = extrinsicScore
bestParse = Pk

end if
end for
return bestParse

which to update. In the case of a tie, we prefer the
parse ranked most highly in the n-best list.

The motivation of this selection step is that good
performance on the downstream external task, mea-
sured by the extrinsic metric, should be predictive
of an intrinsically good parse. At the very least,
even if the selected parse is not syntactically cor-
rect, or even if it goes against the original treebank-
ing guidelines, it results in a higher extrinsic score
and should therefore be preferred.

One could imagine extending this framework by
repeatedly running self-training on successively im-
proving parsers in an EM-style algorithm. A recent
work by Hall et al. (2011) on training a parser with
multiple objective functions investigates a similar
idea in the context of online learning.

In this paper we focus our attention on machine
translation as the final application, but one could en-
vision applying our techniques to other applications
such as information extraction or question answer-
ing. In particular, we explore one application of
targeted self-training, where computing the extrin-
sic metric involves plugging the parse into an MT
system’s reordering component and computing the
accuracy of the reordering compared to a reference
word order. We now direct our attention to the de-
tails of this application.



3 The MT Reordering Task

Determining appropriate target language word or-
der for a translation is a fundamental problem in
MT. When translating between languages with sig-
nificantly different word order such as English and
Japanese, it has been shown that metrics which ex-
plicitly account for word-order are much better cor-
related with human judgments of translation qual-
ity than those that give more weight to word choice,
like BLEU (Lavie and Denkowski, 2009; Isozaki et
al., 2010a; Birch and Osborne, 2010). This demon-
strates the importance of getting reordering right.

3.1 Reordering as a separately evaluable
component

One way to break down the problem of translat-
ing between languages with different word order
is to handle reordering and translation separately:
first reorder source-language sentences into target-
language word order in a preprocessing step, and
then translate the reordered sentences. It has been
shown that good results can be achieved by reorder-
ing each input sentence using a series of tree trans-
formations on its parse tree. The rules for tree
transformation can be manually written (Collins et
al., 2005; Wang, 2007; Xu et al., 2009) or auto-
matically learned (Xia and McCord, 2004; Habash,
2007; Genzel, 2010).

Doing reordering as a preprocessing step, sepa-
rately from translation, makes it easy to evaluate re-
ordering performance independently from the MT
system. Accordingly, Talbot et al. (2011) present a
framework for evaluating the quality of reordering
separately from the lexical choice involved in trans-
lation. They propose a simple reordering metric
based on METEOR’s reordering penalty (Lavie and
Denkowski, 2009). This metric is computed solely
on the source language side. To compute it, one
takes the candidate reordering of the input sentence
and partitions it into a set C of contiguous spans
whose content appears contiguously in the same or-
der in the reference. The reordering score is then
computed as

ρ(esys, eref) = 1− |C| − 1

|e| − 1
.

This metric assigns a score between 0 and 1 where 1

indicates that the candidate reordering is identical to
the reference and 0 indicates that no two words that
are contiguous in the candidate reordering are con-
tiguous in the reference. For example, if a reference
reordering is A B C D E, candidate reordering A
B E C Dwould get score 1−(3−1)/(5−1) = 0.5.

Talbot et al. (2011) show that this reordering score
is strongly correlated with human judgment of trans-
lation quality. Furthermore, they propose to evalu-
ate the reordering quality of an MT system by com-
puting its reordering score on a test set consisting
of source language sentences and their reference re-
orderings. In this paper, we take the same approach
for evaluation, and in addition, we use corpora of
source language sentences and their reference re-
orderings for training the system, not just testing
it. We describe in more detail how the reference re-
ordering data was prepared in Section 4.1.

3.2 Reordering quality as predictor of parse
quality

Figure 1 gives concrete examples of good and bad
reorderings of an English sentence into Japanese
word order. It shows that a bad parse leads to a bad
reordering (lacking inversion of verb “wear” and ob-
ject “sunscreen”) and a low reordering score. Could
we flip this causality around, and perhaps try to iden-
tify a good parse tree based on its reordering score?
With the experiments in this paper, we show that in-
deed a high reordering score is predictive of the un-
derlying parse tree that was used to generate the re-
ordering being a good parse (or, at least, being good
enough for our purpose).

In the case of translating English to Japanese or
another SOV language, there is a large amount of
reordering required, but with a relatively small num-
ber of reordering rules one can cover a large pro-
portion of reordering phenomena. Isozaki et al.
(2010b), for instance, were able to get impressive
English→Japanese results with only a single re-
ordering rule, given a suitable definition of a head.
Hence, the reordering task depends crucially on a
correct syntactic analysis and is extremely sensitive
to parser errors.



4 Experimental Setup

4.1 Treebank data

In our experiments the baseline training corpus is
the Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1993) using standard train-
ing/development/testing splits. We converted the
treebank to match the tokenization expected by our
MT system. In particular, we split tokens containing
hyphens into multiple tokens and, somewhat sim-
plistically, gave the original token’s part-of-speech
tag to all newly created tokens. In Section 6 we
make also use of the Question Treebank (QTB)
(Judge et al., 2006), as a source of syntactically an-
notated out-of-domain data. Though we experiment
with both dependency parsers and phrase structure
parsers, our MT system assumes dependency parses
as input. We use the Stanford converter (de Marneffe
et al., 2006) to convert phrase structure parse trees to
dependency parse trees (for both treebank trees and
predicted trees).

4.2 Reference reordering data

We aim to build an MT system that can accurately
translate typical English text that one finds on the
Internet to SOV langauges. To this end, we ran-
domly sampled 13595 English sentences from the
web and created Japanese-word-order reference re-
orderings for them. We split the sentences arbitrarily
into a 6268-sentence Web-Train corpus and a 7327-
sentence Web-Test corpus.

To make the reference alignments we used the
technique suggested by Talbot et al. (2011): ask
annotators to translate each English sentence to
Japanese extremely literally and annotate which En-
glish words align to which Japanese words. Golden
reference reorderings can be made programmati-
cally from these annotations. Creating a large set
of reference reorderings is straightforward because
annotators need little special background or train-
ing, as long as they can speak both the source and
target languages. We chose Japanese as the target
language through which to create the English refer-
ence reorderings because we had access to bilingual
annotators fluent in English and Japanese.

Good parse

Reordered:
15 or greater of an SPF has that sunscreen Wear
Reordering score: 1.0 (matches reference)

Bad parse

Reordered:
15 or greater of an SPF has that Wear sunscreen
Reordering score: 0.78 (“Wear” is out of place)

Figure 1: Examples of good and bad parses and cor-
responding reorderings for translation from English to
Japanese. The good parse correctly identifies “Wear” as
the main verb and moves it to the end of the sentence; the
bad parse analyses “Wear sunscreen” as a noun phrase
and does not reorder it. This example was one of the
wins in the human evaluation of Section 5.2.

4.3 Parsers

The core dependency parser we use is an implemen-
tation of a transition-based dependency parser using
an arc-eager transition strategy (Nivre, 2008). The
parser is trained using the averaged perceptron algo-
rithm with an early update strategy as described in
Zhang and Clark (2008). The parser uses the fol-
lowing features: word identity of the first two words
on the buffer, the top word on the stack and the head
of the top word on the stack (if available); part-of-
speech identities of the first four words on the buffer
and top two words on the stack; dependency arc la-
bel identities for the top word on the stack, the left
and rightmost modifier of the top word on the stack,
and the leftmost modifier of the first word in the
buffer. We also include conjunctions over all non-
lexical features.

We also give results for the latent variable parser
(a.k.a. BerkeleyParser) of Petrov et al. (2006). We
convert the constituency trees output by the Berke-
leyParser to labeled dependency trees using the same
procedure that is applied to the treebanks.

While the BerkeleyParser views part-of-speech
(POS) tagging as an integral part of parsing, our
dependency parser requires the input to be tagged



with a separate POS tagger. We use the TnT tag-
ger (Brants, 2000) in our experiments, because of
its efficiency and ease of use. Tagger and parser are
always trained on the same data.

For all parsers, we lowercase the input at train and
test time. We found that this improves performance
in parsing web text. In addition to general upper-
case/lowercase noisiness of the web text negatively
impacting scores, we found that the baseline case-
sensitive parsers are especially bad at parsing imper-
ative sentences, as discussed in Section 5.3.2.

4.4 Reordering rules
In this paper we focus on English to Japanese, Ko-
rean, and Turkish translation. We use a superset of
the reordering rules proposed by Xu et al. (2009),
which flatten a dependency tree into SOV word or-
der that is suitable for all three languages. The rules
define a precedence order for the dependents of each
part of speech. For example, a slightly simplified
version of the precedence order of child labels for
a verbal head HEADVERB is: advcl, nsubj, prep,
[other children], dobj, prt, aux, neg, HEADVERB,
mark, ref, compl.

Alternatively, we could have used an automatic
reordering-rule learning framework like that of Gen-
zel (2010). Because the reordering accuracy met-
ric can be computed for any source/target language
pair, this would have made our approach language
completely independent and applicable to any lan-
guage pair. We chose to use manually written rules
to eliminate the variance induced by the automatic
reordering-rule learning framework.

4.5 MT system
We carried out all our translation experiments on a
state-of-the-art phrase-based statistical MT system.
During both training and testing, the system reorders
source-language sentences in a preprocessing step
using the above-mentioned rules. During decoding,
we used an allowed jump width of 4 words. In ad-
dition to the regular distance distortion model, we
incorporate a maximum entropy based lexicalized
phrase reordering model (Zens and Ney, 2006) as
a feature used in decoding.

Overall for decoding, we use between 20 to
30 features, whose weights are optimized using
MERT (Och, 2003). All experiments for a given lan-

guage pair use the same set of MERT weights tuned
on a system using a separate parser (that is neither
the baseline nor the experiment parser). This po-
tentially underestimates the improvements that can
be obtained, but also eliminates MERT as a pos-
sible source of improvement, allowing us to trace
back improvements in translation quality directly to
parser changes.2

For parallel training data, we use a custom collec-
tion of parallel documents. They come from vari-
ous sources with a substantial portion coming from
the web after using simple heuristics to identify po-
tential document pairs. For all language pairs, we
trained on approximately 300 million source words
each.

5 Experiments Reordering Web Text

We experimented with parsers trained in three dif-
ferent ways:

1. Baseline: trained only on WSJ-Train.

2. Standard self-training: trained on WSJ-Train
and 1-best parse of the Web-Train set by base-
line parser.

3. Targeted self-training: trained on WSJ-Train
and, for each sentence in Web-Train, the parse
from the baseline parser’s 512-best list that
when reordered gives the highest reordering
score.3

5.1 Standard self-training vs targeted
self-training

Table 1 shows that targeted self-training on Web-
Train significantly improves Web-Test reordering
score more than standard self-training for both the
shift-reduce parser and for the BerkeleyParser. The
reordering score is generally divorced from the at-
tachment scores measured on the WSJ-Test tree-
bank: for the shift-reduce parser, Web-Test reorder-
ing score and WSJ-Test labeled attachment score

2We also ran MERT on all systems and the pattern of im-
provement is consistent, but sometimes the improvement is big-
ger or smaller after MERT. For instance, the BLEU delta for
Japanese is +0.0030 with MERT on both sides as opposed to
+0.0025 with no MERT.

3We saw consistent but diminishing improvements as we in-
creased the size of the n-best list.



Parser Web-Test reordering WSJ-Test LAS
Shift-reduce WSJ baseline 0.757 85.31%
+ self-training 1x 0.760 85.26%
+ self-training 10x 0.756 84.14%
+ targeted self-training 1x 0.770 85.19%
+ targeted self-training 10x 0.777 84.48%
Berkeley WSJ baseline 0.780 88.66%
+ self-training 1x 0.785 89.21%
+ targeted self-training 1x 0.790 89.32%

Table 1: English→Japanese reordering scores on Web-Test for standard self-training and targeted self-training on
Web-Train. Label “10x” indicates that the self-training data was weighted 10x relative to the WSJ training data.
Bolded reordering scores are different from WSJ-only baseline with 95% confidence but are not significantly different
from each other within the same group.

English to BLEU Human evaluation (scores range 0 to 6)
WSJ-only Targeted WSJ-only Targeted Sig. difference?

Japanese 0.1777 0.1802 2.56 2.69 yes (at 95% level)
Korean 0.3229 0.3259 2.61 2.70 yes (at 90% level)
Turkish 0.1344 0.1370 2.10 2.20 yes (at 95% level)

Table 2: BLEU scores and human evaluation results for translation between three language pairs, varying only the
parser between systems. “WSJ-only” corresponds to the baseline WSJ-only shift-reduce parser; “Targeted” corre-
sponds to the Web-Train targeted self-training 10x shift-reduce parser.

(LAS) are anti-correlated, but for BerkeleyParser
they are correlated. Interestingly, weighting the self-
training data more seems to have a negative effect on
both metrics.4

One explanation for the drops in LAS is that some
parts of the parse tree are important for downstream
reordering quality while others are not (or only to
a lesser extent). Some distinctions between labels
become less important; for example, arcs labeled
“amod” and “advmod” are transformed identically
by the reordering rules. Some semantic distinctions
also become less important; for example, any sane
interpretation of “red hot car” would be reordered
the same, that is, not at all.

5.2 Translation quality improvement

To put the improvement of the MT system in terms
of BLEU score (Papineni et al., 2002), a widely used
metric for automatic MT evaluation, we took 5000
sentences from Web-Test and had humans gener-
ate reference translations into Japanese, Korean, and

4We did not attempt this experiment for the BerkeleyParser
since training was too slow.

Turkish. We then trained MT systems varying only
the parser used for reordering in training and decod-
ing. Table 2 shows that targeted self-training data
increases BLEU score for translation into all three
languages.

In addition to BLEU increase, a side-by-side hu-
man evaluation on 500 sentences (sampled from
the 5000 used to compute BLEU scores) showed
a statistically significant improvement for all three
languages (see again Table 2). For each sen-
tence, we asked annotators to simultaneously score
both translations from 0 to 6, with guidelines
that 6=“Perfect”, 4=“Most Meaning/Grammar”,
2=“Some Meaning/Grammar”, 0=“Nonsense”. We
computed confidence intervals for the average score
difference using bootstrap resampling; a difference
is significant if the two-sided confidence interval
does not include 0.

5.3 Analysis

As the divergence between the labeled attachment
score on the WSJ-Test data and the reordering score
on the WSJ-Test data indicates, parsing web text



Parser Click as N Click as V Imperative rate
case-sensitive shift-reduce WSJ-only 74 0 6.3%
case-sensitive shift-reduce + Web-Train targeted self-training 75 0 10.5%
case-insensitive shift-reduce WSJ-only 75 0 10.3%
case-insensitive shift-reduce + Web-Train targeted self-training 75 0 11.6%
Berkeley WSJ-only 35 35 11.9%
Berkeley + Web-Train targeted self-training 13 58 12.5%
(WSJ-Train) 1 0 0.7%

Table 3: Counts on Web-Test of “click” tagged as a noun and verb and percentage of sentences parsed imperatively.

poses very different challenges compared to parsing
newswire. We show how our method improves pars-
ing performance and reordering performance on two
examples: the trendy word “click” and imperative
sentences.

5.3.1 Click

The word “click” appears only once in the train-
ing portion of the WSJ (as a noun), but appears many
times in our Web test data. Table 3 shows the distri-
bution of part-of-speech tags that different parsers
assign to “click”. The WSJ-only parsers tag “click”
as a noun far too frequently. The WSJ-only shift-
reduce parser refuses to tag “click” as a verb even
with targeted self-training, but BerkeleyParser does
learn to tag “click” more often as a verb.

It turns out that the shift-reduce parser’s stub-
bornness is not due to a fundamental problem of
the parser, but due to an artifact in TnT. To in-
crease speed, TnT restricts the choices of tags for
known words to previously-seen tags. This causes
the parser’s n-best lists to never hypothesize “click”
as a verb, and self-training doesn’t click no matter
how targeted it is. This shows that the targeted self-
training approach heavily relies on the diversity of
the baseline parser’s n-best lists.

It should be noted here that it would be easy to
combine our approach with the uptraining approach
of Petrov et al. (2010). The idea would be to use the
BerkeleyParser to generate the n-best lists; perhaps
we could call this targeted uptraining. This way, the
shift-reduce parser could benefit both from the gen-
erally higher quality of the parse trees produced by
the BerkeleyParser, as well as from the information
provided by the extrinsic scoring function.

5.3.2 Imperatives
As Table 3 shows, the WSJ training set contains

only 0.7% imperative sentences.5 In contrast, our
test sentences from the web contain approximately
10% imperatives. As a result, parsers trained exclu-
sively on the WSJ underproduce imperative parses,
especially a case-sensitive version of the baseline.
Targeted self-training helps the parsers to predict im-
perative parses more often.

Targeted self-training works well for generating
training data with correctly-annotated imperative
constructions because the reordering of main sub-
jects and verbs in an SOV language like Japanese
is very distinct: main subjects stay at the begin-
ning of the sentence, and main verbs are reordered
to the end of the sentence. It is thus especially easy
to know whether an imperative parse is correct or
not by looking at the reference reordering. Figure 1
gives an example: the bad (WSJ-only) parse doesn’t
catch on to the imperativeness and gets a low re-
ordering score.

6 Targeted Self-Training vs Training on
Treebanks for Domain Adaptation

If task-specific annotation is cheap, then it is rea-
sonable to consider whether we could use targeted
self-training to adapt a parser to a new domain as
a cheaper alternative to making new treebanks. For
example, if we want to build a parser that can reorder
question sentences better than our baseline WSJ-
only parser, we have these two options:

1. Manually construct PTB-style trees for 2000
5As an approximation, we count every parse that begins with

a root verb as an imperative.



questions and train on the resulting treebank.

2. Create reference reorderings for 2000 questions
and then do targeted self-training.

To compare these approaches, we created reference
reordering data for our train (2000 sentences) and
test (1000 sentences) splits of the Question Tree-
bank (Judge et al., 2006). Table 4 shows that both
ways of training on QTB-Train sentences give sim-
ilarly large improvements in reordering score on
QTB-Test. Table 5 confirms that this corresponds
to very large increases in English→Japanese BLEU
score and subjective translation quality. In the hu-
man side-by-side comparison, the baseline transla-
tions achieved an average score of 2.12, while the
targeted self-training translations received a score of
2.94, where a score of 2 corresponds to “some mean-
ing/grammar” and “4” corresponds to “most mean-
ing/grammar”.

But which of the two approaches is better? In
the shift-reduce parser, targeted self-training gives
higher reordering scores than training on the tree-
bank, and in BerkeleyParser, the opposite is true.
Thus both approaches produce similarly good re-
sults. From a practical perspective, the advantage of
targeted self-training depends on whether the extrin-
sic metric is cheaper to calculate than treebanking.
For MT reordering, making reference reorderings is
cheap, so targeted self-training is relatively advanta-
geous.

As before, we can examine whether labeled at-
tachment score measured on the test set of the
QTB is predictive of reordering quality. Table 4
shows that targeted self-training raises LAS from
64.78→69.17%. But adding the treebank leads
to much larger increases, resulting in an LAS of
84.75%, without giving higher reordering score. We
can conclude that high LAS is not necessary to
achieve top reordering scores.

Perhaps our reordering rules are somehow defi-
cient when it comes to reordering correctly-parsed
questions, and as a result the targeted self-training
process steers the parser towards producing patho-
logical trees with little intrinsic meaning. To explore
this possibility, we computed reordering scores after
reordering the QTB-Test treebank trees directly. Ta-
ble 4 shows that this gives reordering scores similar
to those of our best parsers. Therefore it is at least

possible that the targeted self-training process could
have resulted in a parser that achieves high reorder-
ing score by producing parses that look like those in
the QuestionBank.

7 Related Work

Our approach to training parsers for reordering is
closely related to self/up-training (McClosky. et al.,
2006; Petrov et al., 2010). However, unlike uptrain-
ing, our method does not use only the 1-best output
of the first-stage parser, but has access to the n-best
list. This makes it similar to the work of McClosky.
et al. (2006), except that we use an extrinsic metric
(MT reordering score) to select a high quality parse
tree, rather than a second, reranking model that has
access to additional features.

Targeted self-training is also similar to the re-
training of Burkett et al. (2010) in which they
jointly parse unannotated bilingual text using a mul-
tiview learning objective, then retrain the monolin-
gual parser models to include each side of the jointly
parsed bitext as monolingual training data. Our ap-
proach is different in that it doesn’t use a second
parser and bitext to guide the creation of new train-
ing data, and instead relies on n-best lists and an
extrinsic metric.

Our method can be considered an instance of
weakly or distantly supervised structured prediction
(Chang et al., 2007; Chang et al., 2010; Clarke et al.,
2010; Ganchev et al., 2010). Those methods attempt
to learn structure models from related external sig-
nals or aggregate data statistics. This work differs
in two respects. First, we use the external signals
not as explicit constraints, but to compute an ora-
cle score used to re-rank a set of parses. As such,
there are no requirements that it factor by the struc-
ture of the parse tree and can in fact be any arbitrary
metric. Second, our final objective is different. In
weakly/distantly supervised learning, the objective
is to use external knowledge to build better struc-
tured predictors. In our case this would mean using
the reordering metric as a means to train better de-
pendency parsers. Our objective, on the other hand,
is to use the extrinsic metric to train parsers that are
specifically better at the reordering task, and, as a re-
sult, better suited for MT. This makes our work more
in the spirit of Liang et al. (2006), who train a per-



Parser QTB-Test reordering QTB-Test LAS
Shift-reduce WSJ baseline 0.663 64.78%
+ treebank 1x 0.704 77.12%
+ treebank 10x 0.768 84.75%
+ targeted self-training 1x 0.746 67.84%
+ targeted self-training 10x 0.779 69.17%
Berkeley WSJ baseline 0.733 76.50%
+ treebank 1x 0.800 87.79%
+ targeted self-training 1x 0.775 80.64%
(using treebank trees directly) 0.788 100%

Table 4: Reordering and labeled attachment scores on QTB-Test for treebank training and targeted self-training on
QTB-Train.

English to QTB-Test BLEU Human evaluation (scores range 0 to 6)
WSJ-only Targeted WSJ-only Targeted Sig. difference?

Japanese 0.2379 0.2615 2.12 2.94 yes (at 95% level)

Table 5: BLEU scores and human evaluation results for English→Japanese translation of the QTB-Test corpus, varying
only the parser between systems between the WSJ-only shift-reduce parser and the QTB-Train targeted self-training
10x shift-reduce parser.

ceptron model for an end-to-end MT system where
the alignment parameters are updated based on se-
lecting an alignment from a n-best list that leads to
highest BLEU score. As mentioned earlier, this also
makes our work similar to Hall et al. (2011) who
train a perceptron algorithm on multiple objective
functions with the goal of producing parsers that are
optimized for extrinsic metrics.

It has previously been observed that parsers of-
ten perform differently for downstream applications.
Miyao et al. (2008) compared parser quality in the
biomedical domain using a protein-protein interac-
tion (PPI) identification accuracy metric. This al-
lowed them to compare the utility of extant depen-
dency parsers, phrase structure parsers, and deep
structure parsers for the PPI identification task. One
could apply the targeted self-training technique we
describe to optimize any of these parsers for the PPI
task, similar to how we have optimized our parser
for the MT reordering task.

8 Conclusion

We introduced a variant of self-training that targets
parser training towards an extrinsic evaluation met-
ric. We use this targeted self-training approach to
train parsers that improve the accuracy of the word

reordering component of a machine translation sys-
tem. This significantly improves the subjective qual-
ity of the system’s translations from English into
three SOV languages. While the new parsers give
improvements in these external evaluations, their in-
trinsic attachment scores go down overall compared
to baseline parsers trained only on treebanks. We
conclude that when using a parser as a component
of a larger external system, it can be advantageous
to incorporate an extrinsic metric into parser train-
ing and evaluation, and that targeted self-training is
an effective technique for incorporating an extrinsic
metric into parser training.
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