
Flexible Text Segmentation with Structured Multilabel Classification

Ryan McDonald Koby Crammer Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{ryantm,crammer,pereira}@cis.upenn.edu

Abstract

Many language processing tasks can be re-
duced to breaking the text into segments
with prescribed properties. Such tasks
include sentence splitting, tokenization,
named-entity extraction, and chunking.
We present a new model of text segmenta-
tion based on ideas from multilabel clas-
sification. Using this model, we can natu-
rally represent segmentation problems in-
volving overlapping and non-contiguous
segments. We evaluate the model on en-
tity extraction and noun-phrase chunking
and show that it is more accurate for over-
lapping and non-contiguous segments, but
it still performs well on simpler data sets
for which sequential tagging has been the
best method.

1 Introduction

Text segmentation is a basic task in language pro-
cessing, with applications such as tokenization, sen-
tence splitting, named-entity extraction, and chunk-
ing. Many parsers, translation systems, and extrac-
tion systems rely on such segmentations to accu-
rately process the data. Depending on the applica-
tion, segments may be tokens, phrases, or sentences.
However, in this paper we primarily focus on seg-
menting sentences into tokens.

The most common approach to text segmenta-
tion is to use finite-state sequence tagging mod-
els, in which each atomic text element (character

or token) is labeled with a tag representing its role
in a segmentation. Models of that form include
hidden Markov models (Rabiner, 1989; Bikel et
al., 1999) as well as discriminative tagging mod-
els based on maximum entropy classification (Rat-
naparkhi, 1996; McCallum et al., 2000), conditional
random fields (Lafferty et al., 2001; Sha and Pereira,
2003), and large-margin techniques (Kudo and Mat-
sumoto, 2001; Taskar et al., 2003). Tagging mod-
els are the best previous methods for text segmen-
tation. However, their purely sequential form limits
their ability to naturally handle overlapping or non-
contiguous segments.

We present here an alternative view of segmenta-
tion as structured multilabel classification. In this
view, a segmentation of a text is a set of segments,
each of which is defined by the set of text positions
that belong to the segment. Thus, a particular seg-
ment may not be a set of consecutive positions in
the text, and segments may overlap. Given a text
x = x1 · · · xn, the set of possible segments, which
corresponds to the set of possible classification la-
bels, is seg(x) = {O,I}n; for y ∈ seg(x), yi = I
iff xi belongs to the segment. Then, our segmen-
tation task is to determine which labels are correct
segments in a given text. We have thus a structured
multilabel classification problem: each instance, a
text, may have multiple structured labels, represent-
ing each of its segments. These labels are structured
in that they do not come from a predefined set, but
instead are built from sets of choices associated to
the elements of arbitrarily long instances.

More generally, we may be interested in typed
segments, e.g. segments naming different types of

entities. In that case, the set of segment labels is
seg(x) = T × {O,I}n, where T is the set of seg-
ment types. Since the extension is straightforward,
we frame the discussion in terms of untyped seg-
ments, and only discuss segment types as needed.

At first sight, it might appear that we have made
the segmentation problem intractably harder by turn-
ing it into a classification problem with a number
of labels exponential on the length of the instance.
However, we can bound the number of labels under
consideration and take advantage of the structure of
labels to find the k most likely labels efficiently. This
will allow us to exploit recent advances in online dis-
criminative methods for multilabel classification and
ranking (Crammer and Singer, 2002).

Though multilabel classification has been well
studied (Schapire and Singer, 1999; Elisseeff and
Weston, 2001), as far as we are aware, this is the
first study involving structured labels.

2 Segmentation as Tagging

The standard approach to text segmentation is to use
tagging techniques with a BIO tag set. Elements in
the input text are tagged with one of B for the be-
ginning of a contiguous segment, I for the inside
of a contiguous segment, or O for outside a seg-
ment. Thus, segments must be contiguous and non-
overlapping. For instance, consider the sentence Es-
timated volume was a light 2.4 million ounces. Fig-
ure 1a shows how this sentence would be labeled
using the BIO tag set for the problem of identifying
base NPs in text. Given a particular tagging for a
sentence, it is trivial to find all the segments, those
whose tag sequences are longest matches for the reg-
ular expression BI∗. For typed segments, the BIO
tag set is easily augmented to indicate not only seg-
ment boundaries, but also the type of each segment.
Figure 1b exemplifies the tags for the task of finding
people and organizations in text.

Sequential tagging with the BIO tag set has
proven quite accurate for shallow parsing and named
entity extraction tasks (Kudo and Matsumoto, 2001;
Sha and Pereira, 2003; Tjong Kim Sang and
De Meulder, 2003). However, this approach
can only identify non-overlapping, contiguous seg-
ments. This is sufficient for some applications, and
in any case, most training data sets are annotated

without concern for overlapping or non-contiguous
segments. However, there are instances in which se-
quential labeling techniques using the BIO label set
will encounter problems.

Figure 2 shows two simple examples of segmen-
tations involving overlapping, non-contiguous seg-
ments. In both cases, it is difficult to see how a
sequential tagger could extract the segments cor-
rectly. It would be possible to grow the tag set to
represent a bounded number of overlapping, non-
contiguous segments by representing all possible
combinations of segment membership over k over-
lapping segments, but this would require an arbitrary
upper bound on k and would lead to models that gen-
eralize poorly and are expensive to train.

Dickinson and Meurers (2005) point out that, as
language processing begins to tackle problems in
free-word order languages and discourse analysis,
annotating and extracting non-contiguous segmen-
tations of text will become increasingly important.
Though we focus primarily on entity extraction and
NP chunking in this paper, there is no reason why
ideas presented here could not be extended to man-
aging other non-contiguous phenomena.

3 Structured Multilabel Classification

As outlined in Section 1, we represent segmentation
as multilabel classification, assigning to each text
the set of segments it contains. Figure 3 shows the
segments for the examples of Figure 2. Each seg-
ment is given by a O/I assignment to its words, in-
dicating which words belong to the segment.

By representing the segmentation problems as
multilabel classification, we have fundamentally
changed the objective of our learning and inference
algorithms. The sequential tagging formulation is
aimed to learn and find the best possible tagging of
a text. In multilabel classification, we train model
parameters so that correct labels — that is, correct
segments – receive higher score than all incorrect
ones. Likewise, inference becomes the problem of
finding the set of correct labels for a text, that is, the
set of correct segments.

We now describe the learning problem using the
decision-theoretic multilabel classification and rank-
ing framework of Crammer and Singer (2002) and
Crammer (2005) as our starting point. In Sec-

a. Estimated volume was a light 2.4 million ounces .
B I O B I I I I O

b. Bill Clinton and Microsoft founder Bill Gates met today for 20 minutes .
B-PER I-PER O B-ORG O B-PER I-PER O O O O O O

Figure 1: Sequential labeling formulation of text segmentation using the BIO label set. a) NP-chunking
tasks. b) Named-entity extraction task.

a) Today, Bill and Hilary Clinton traveled to Canada.
- Person: Bill Clinton
- Person: Hilary Clinton

b) ... purified bovine P450 11 beta / 18 / 19 - hydroxylase was ...
- Enzyme: P450 11 beta-hydroxylase
- Enzyme: P450 18-hydroxylase
- Enzyme: P450 19-hydroxilase

Figure 2: Examples of overlapping and non-contiguous text segmentations.

tion 3.2, we describe a polynomial-time inference
algorithm for finding up to k correct segments.

3.1 Training Multilabel Classifiers

Our model is based on a linear score s(x,y; w) for
each segment y of text x, defined as

s(x,y; w) = w · f(x,y)

where f(x,y) is a feature vector representation of
the sentence-segment pair, and w is a vector of
feature weights. For a given text x, act(x) ⊆
seg(x) denotes the set of correct segments for x, and
bestk(x; w) denotes the set of k segments with high-
est score relative to the weight vector w. For learn-
ing, we use a training set T = {(xt, act(xt))}

|T |
t=1 of

texts labeled with the correct segmentation.
We will discuss later the design of f(x,y) and an

efficient algorithm for finding the k highest scoring
segments (where k is sufficiently large to include
all correct segments). In this section, we present a
method for learning a weight vector w that seeks to
score correct segments above all incorrect segments.

Crammer and Singer (2002), extended by Cram-
mer (2005), provide online learning algorithms for
multilabel classification and ranking that take one
instance at a time, construct a set of scoring con-
straints for the instance, and adjust the weight vec-
tor to satisfy the constraints. The constraints en-
force a margin between the scores of correct labels
and those of incorrect labels. The benefits of large-
margin learning are best known from SVMs (Cris-
tianini and Shawe-Taylor, 2000; Schölkopf and

Training data: T = {(xt, act(xt))}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N

3. for t : 1..|T |

4. w(i+1) = arg minw
‚

‚

‚
w − w(i)

‚

‚

‚

2

s.t. s(xt, y; w) ≥ s(xt, y
′; w) + 1

∀y ∈ act(xt), ∀y
′ ∈ bestk(xt; w(i)) − act(xt)

6. i = i + 1

7. w = w(N∗|T |)

Figure 4: A simplified version of the multilabel
learning algorithm of Crammer and Singer (2002).

Smola, 2002), and are analyzed in detail by Cram-
mer (2005) for online multilabel classification.

For segmentation, the number of possible labels
(segments) is exponential on the length of the text.
We make the problem tractable by including only the
margin constraints between correct segments and at
most k highest scoring incorrect segments. Figure 4
sketches an online learning algorithm for multilabel
classification based on the work of Crammer (2005).
In the algorithm, w(i+1) is the projection of w(i) onto
the set of weight vectors such that the scores of cor-
rect segments are separated by a margin of at least
1 from the scores of incorrect segments among the
k top-scoring segments. This update is conservative
in that there is no weight change if the constraint set
is already satisfied or empty; if some constraints are
not satisfied, we make the smallest weight change
that satisfies the constraints. Since, the objective is
quadratic in w and the constraints are linear, the op-
timization problem can be solved by Hildreth’s al-

a) Today , Bill and Hilary Clinton traveled to Canada .
O O I O O I O O O O
O O O O I I O O O O

b) ... purified bovine P450 11 beta / 18 / 19 - hydroxylase was ...
O O I I I O O O O I I O
O O I O O O I O O I I O
O O I O O O O O I I I O

Figure 3: Correct segments for two examples.

gorithm (Censor and Zenios, 1997).
Using standard arguments for linear classifiers

(add constant feature, rescale weights) and the fact
that all the correct scores in line 4 of Figure 4 are re-
quired to be above all the incorrect scores in the top
k, that line can be replaced by

w(i+1) = arg minw
∥

∥w − w(i)
∥

∥

2

s.t. s(xt,y; w) ≥ 1 and s(xt,y
′; w) ≤ −1

∀y ∈ act(xt),∀y
′ ∈ bestk(xt; w(i)) − act(xt)

If v is the number of correct segments for x,
this transformation replaces O(kv) constraints with
O(k + v) constraints: segment scores are compared
to a single positive or negative threshold rather then
to each other. At test time, we find the segments
with positive score by finding the k highest scoring
segments and discarding those with a negative score.

3.2 Inference

During learning and at test time we require a method
for finding the k highest scoring segments. At test
time, we predict as correct all the segments with pos-
itive score in the top k. In this section we give an
algorithm that calculates this precisely.

For inference, tagging models typically use the
Viterbi algorithm (Rabiner, 1989). The algorithm is
given by the following standard recurrences:

S[i, t] = maxt′ s(t
′, t, i) + S[i − 1, t′]

B[i, t] = arg maxt′ s(t
′, t, i) + S[i − 1, t′]

with appropriate initial conditions, where s(t′, t, i)
is the score for going from tag t′ at i − 1 to tag t

at i. The dynamic programming table S[i, t] stores
the score of the best tag sequence ending at posi-
tion i with tag t, and B[i, t] is a back-pointer to the
previous tag in the best sequence ending at i with
t, which allows us to reconstruct the best sequence.
The Viterbi algorithm has easy k-best extensions.

We could find the k highest scoring segments us-
ing Viterbi. However, for the case of non-contiguous
segments, we would like to represent higher-order
dependencies that are difficult to model in Viterbi. In
particular, in Figure 3b we definitely want a feature
bridging the gap between Bill and Clinton, which
could not be captured with a standard first-order
model. But moving to higher-order models would
require adding dimensions to the dynamic program-
ming tables S and B, with corresponding multipliers
to the complexity of inference.

To represent dependencies between non-
contiguous text positions, for any given segment
y = y1 · · · yn, let i(y) = 0i1 · · · im(n + 1) be the
increasing sequence of indices ij such that yij = I,
padded for convenience with the dummy first index
0 and last index n + 1. Also for convenience, set
x0 = -s- and xn+1 = -e- for fixed start and
end markers. Then, we restrict ourselves to feature
functions f(x,y) that factor relative to the input as

f(x,y) =

|i(y)|
∑

j=1

g(i(y)j−1, i(y)j) (1)

where i(y)j is the jth integer in i(y) and g is a fea-
ture function depending on arbitrary properties of
the input relative to the indices i(y)j−1 and i(y)j .

Applying (1) to the segment Bill Clinton in Fig-
ure 3, its score would be

w · [g(0, 3) + g(3, 6) + g(6, 11)]

This feature representation allows us to include de-
pendencies between non-contiguous segment posi-
tions, as well as dependencies on any properties of
the input, including properties of skipped positions.

We now define the following dynamic program

S[i] = maxj<i S[j] + w · g(j, i)
B[i] = arg maxj<i S[j] + w · g(j, i)

These recurrences compute the score S[i] of the best
partial segment ending at i as the sum of the max-
imum score of a partial segment ending at position
j < i, and the score of skipping from j to i. The
back-pointer table B allows us to reconstruct the se-
quence of positions included in the segment.

Clearly, this program requires O(n2) time for a
text of length n. Furthermore we can easily augment
this algorithm in the standard fashion to find the k

best segments, and multiple segment types, result-
ing in a runtime of O(n2kT), where T is the number
of types. O(n2kT) is not ideal, but is still practical
since in this work we are segmenting sentences. If
we can bound the largest gap in any non-contiguous
segment by a constant g � n, then the runtime can
be improved to O(ngkT). This runtime does not
compare favorably to the standard Viterbi algorithm
that runs in O(nT 2), especially for large k. How-
ever, we found that for even large k we could still
train large models in a matter of hours and test on
unseen data in a few minutes.

3.2.1 Restrictions

Often a segmentation task or data set will restrict
particular kinds of segments. For instance, it may be
the case that a data set does not have any overlap-
ping or non-contiguous segments. Embedded seg-
mentations – those in which one segment’s tokens
are a subset of another’s – is also a phenomenon that
sometimes does not occur.

It is easy to restrict the inference algorithm to dis-
allow such segments if they are unnecessary. For ex-
ample, if two segments overlap or are embedded, the
inference algorithm can just return the highest scor-
ing one. Or it can simply ignore all non-contiguous
segments if it is known that they do not occur in the
data. In Section 4 we will augment the inference
algorithm accordingly for each data set.

3.3 Feature Representation

We now discuss the design of the feature function
for two consecutive segment positions g(j, i), where
j < i. We build individual binary-valued features
from predicates over the input, for instance, the iden-
tities of words in the sentence at particular posi-
tions relative to i and j. The selection of predicates
varies by task, and we provide specific predicate sets
in Section 4 for various data sets. In this section,

we use for illustration word-pair identity predicates
such as xj = Bill & xi = Clinton.

For sequential tagging models, predicates are
combined with the set of states (or tags) to create
a feature representation. For our model, we define
the following possible states:

start ≡ j = 0
end ≡ i = n + 1

next ≡ j = i − 1
skip ≡ j < i − 1

For example, the following features would be on for
g(0, 3)1 and g(3, 6), respectively, in Figure 3a:

xj = -s- & xi = Bill & start
xj = Bill & xi = Clinton & skip

These features indicate a predicate’s role in the seg-
ment: at the beginning, at the end, over contiguous
segment words or skipping over some words. All
features can be augmented to indicate specific seg-
ment types for multi-type segmentation tasks. No
matter what the task, we always add predicates that
represent ranges of the distance i−j, as well as what
words or part-of-speech tags occur between the two
words. For instance, g(3, 6) might contain

word-in-between= and & skip

These features are designed to identify common
characteristics of non-contiguous segments such
as the presence of conjunctions or punctuation in
skipped portions. Although we have considered only
binary features here, the model in principle allows
arbitrary real-valued feature.

3.4 Summary

We presented a method for text segmentation that
equates the problem to structured multilabel classi-
fication where each label corresponds to a segment.
We showed that learning and inference can be man-
aged tractably in the formulation by efficiently find-
ing the k highest scoring segments through a dy-
namic programming algorithm that factors the struc-
ture of each segment. The only concern is that k

must be large enough to include all correct segments,

1Note that “skip” is not on for g(0, 3) even though j < i−1.
Start and end states override other states.

which we will discuss further in Section 4. This
method naturally models all possible segmentations
including those with overlapping or non-contiguous
segments. Out approach can be seen as multilabel
variant of the work of McDonald et al. (2004), which
creates a set of constraints to separate the score of
the single correct output from the k highest scoring
outputs with an appropriate large margin.

4 Experiments

We now describe a set of experiments on named en-
tity and base NP segmentation. For these experi-
ments, we set k = n, where n is the length of the
sentence. This represents a reasonable upper bound
on the number of entities or chunks in a sentence and
results in a time complexity of O(n3T).

We compare our methods with both the averaged
perceptron (Collins, 2002) and conditional random
fields (Lafferty et al., 2001) using identical predicate
sets. Though all systems use identical predicates, the
actual features of the systems are different due to
the fundamental differences between the multilabel
classification and sequential tagging models.

4.1 Standard data sets

Our first experiments are standard named entity and
base NP data sets with no overlapping, embedded or
non-contiguous segments. These experiments will
show that, for simple segmentations, our model is
competitive with sequential tagging models.

For the named entity experiments we used the
CoNLL 2003 (Tjong Kim Sang and De Meulder,
2003) data with people, organizations, locations and
miscellaneous entities. We used standard predicates
based on word, POS and orthographic information
over a previous to next word window. For the NP
chunking experiments we used the standard CoNLL
2000 data set (Kudo and Matsumoto, 2001; Sha and
Pereira, 2003) using the predicate set defined by Sha
and Pereira (2003).

The first three rows of Table 1 compare the mul-
tilabel classification approach to standard sequen-
tial classifiers. As one might expect, the perfor-
mance of the multilabel classification method is be-
low that of the sequential tagging methods. This is
because those methods model contiguous segments
well without the need for thresholds or k-best infer-

ence. In addition, the multilabel method shows sig-
nificantly higher precision then recall. One possible
reason for this is that during the course of learning,
the model will see many segments that are nearly
correct, e.g., segments that overlap correct segments
and differ by a single token. As a result, the model
learns to score all segments containing even a small
amount of negative evidence as invalid in order to
ensure that these nearly correct segments have a suf-
ficiently low score.

One way to alleviate this problem is to restrict the
inference algorithm to not return any overlapping,
non-contiguous or embedded segmentations as dis-
cussed in Section 3.2.1, since this data set does not
contain segments of this kind. This way, the learning
stage only updates the parameters when a nearly cor-
rect segment actually out scores the correct one. The
results of this system are shown in row 4 of Table 1.
We can see that this change did lead to a more bal-
anced precision/recall, however it is clear that more
investigation is required.

4.2 Chemical substance extraction

The second set of experiments involves extract-
ing chemical substance names from MEDLINE ab-
stracts that relevant to the inhibition of the enzyme
CYP450 (PennBioIE, 2005). We focus on abstracts
that have at least one overlapping or non-contiguous
annotation. This data set contains 6164 annotated
chemical substances, including 6% that are both
overlapping and non-contiguous. Figure 3b is an
example from the corpus. We use identical predi-
cates to the named entity experiments in Section 4.1.
Though the data does contain overlapping and non-
contiguous segments, it does not contain embedded
segments. Results are shown in Table 2 using 10-
fold cross validation. The sequential tagging models
were trained using only sentences with no overlap-
ping or non-contiguous entities. We found this pro-
vided the best performance. Row 4 of Table 2 shows
the multilabel approach with the inference algorithm
restricted to not allow embedded segments.

We can see that our method does significantly bet-
ter on this data set (up to a 26% reduction in er-
ror). It is also apparent that the model is picking up
some overlapping and non-contiguous entities (see
Table 2). However, the models performance on these
kinds of entities is lower than overall performance.

a. Named-Entity Extraction b. NP-chunking
Precision Recall F-measure Precision Recall F-measure

Avg. Perceptron 82.46 83.14 82.80 94.22 93.88 94.05
CRFs 83.36 83.57 83.47 94.57 94.00 94.29

Multilabel 92.47 74.19 82.33 94.65 92.28 93.45
Multilabel with Restrictions 91.08 76.68 83.26 94.10 93.70 93.90

Table 1: Results for named-entity extraction and NP-chunking on data sets with only non-overlapping and
contiguous segments annotated.

Chem Substance Extraction - A Chem Substance Extraction - B
Precision Recall F-measure Precision Recall F-measure

Avg. Perceptron 82.98 79.40 81.15 1.0 0.0 0.0
CRFs 85.85 79.06 82.31 1.0 0.0 0.0

Multilabel 88.24 80.84 84.38 62.56 33.67 43.78
Multilabel with Restrictions 88.55 84.59 86.53 72.58 45.92 56.25

Table 2: Results for chemical substance extraction. Table A is for all entities in the data set and Table B is
only for those entities that are overlapping and non-contiguous.

4.3 Tuning Precision and Recall

The learning algorithm in Section 3.1 seeks a sep-
arator through the origin, though, our experimental
results suggest that this tends to favor precision at
the expense of recall. However, at test time we can
use a separation threshold different from zero. This
parameter allows us to trade off precision against re-
call, and could be tuned on held-out data.

Figure 5 plots precision, recall and f-measure
against the threshold for the basic multilabel model
on the chemical substance, NP chunking and person
entity extraction data sets. These plots clearly show
what is expected: higher thresholds give higher pre-
cision, and lower thresholds give higher recall. In
these data sets at least, a zero threshold is almost
always near optimal, though sometimes we would
benefit from a slightly lower threshold.

5 Discussion

We have presented a method for text segmentation
that is base on discriminatively learning structured
multilabel classifications. The benefits include

• Competitive performance with sequential tag-
ging models.

• Flexible modeling of complex segmentations,
including overlapping, embedded and non-
contiguous segments.

• Adjustable precision-recall trade off.

However, there is a computation cost for our models.
For a text of length n, training and testing require

O(n3T) time, where T is the number of segment
types. Fortunately, this still results in training times
on the order of hours.

Our approach is related to the work of Bockhorst
and Craven (2004). In this work, a conditional ran-
dom field model is trained to allow for overlapping
segments with an O(n2) inference algorithm. The
model is applied to biological sequence modeling
with promising results. However, our approaches
differ in two major respects. First, their model is
probabilistic, and trained to maximize segmenta-
tion likelihood, while our model is trained to max-
imize margin. Second, our method allows for non-
contiguous segments, at the cost of a slower O(n3)
inference algorithm.

In further work, the classification threshold
should also be learned to achieve the desired balance
between precision and recall. It would also be useful
to investigate methods for combining these models
with standard sequential tagging models to get top
performance on simple segmentations as well as on
overlapping or non-contiguous ones.

A broader area of investigation are other problems
in language processing that can benefit from struc-
tured multilabel classification, e.g., ambiguities in
language often result in multiple acceptable parses
for sentences. It may be possible to extend the al-
gorithms presented here to learn to distinguish all
acceptable parses from unacceptable ones instead of
just finding a single parse when many are valid.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

CHEM
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1

NP
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

PER

Figure 5: Precision (squares), Recall (circles) and F-measure (line) plotted against threshold values. CHEM:
chemical substance extraction, NP: noun-phrase chunking, and PER: person name extraction.

Acknowledgments

We thank the members of the Penn BioIE project
for the development of the CYP450 corpus that we
used for our experiments. In particular, Seth Kulick
answered many questions about the data. This work
has been supported by the NSF ITR grant 0205448.

References

D.M. Bikel, R. Schwartz, and R.M. Weischedel. 1999.
An algorithm that learns what’s in a name. Machine
Learning Journal Special Issue on Natural Language
Learning, 34(1/3):221–231.

J. Bockhorst and M. Craven. 2004. Markov networks for
detecting overlapping elements in sequence data. In
Proc. NIPS.

Y. Censor and S.A. Zenios. 1997. Parallel optimization :
theory, algorithms, and applications. Oxford Univer-
sity Press.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In Proc. EMNLP.

K. Crammer and Y. Singer. 2002. A new family of online
algorithms for category ranking. In Proc SIGIR.

K. Crammer. 2005. Online Learning for Complex Cat-
egorial Problems. Ph.D. thesis, Hebrew University of
Jerusalem. to appear.

N. Cristianini and J. Shawe-Taylor. 2000. An Introduc-
tion to Support Vector Machines. Cambridge Univer-
sity Press.

M. Dickinson and W.D. Meurers. 2005. Detecting errors
in discontinuous structural annotation. In Proc. ACL.

A. Elisseeff and J. Weston. 2001. A kernel method for
multi-labeled classification. In Proc. NIPS.

T. Kudo and Y. Matsumoto. 2001. Chunking with sup-
port vector machines. In Proc. NAACL.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. ICML.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
mum entropy Markov models for information extrac-
tion and segmentation. In Proceedings of ICML.

R. McDonald, K. Crammer, and F. Pereira. 2004. Large
margin online learning algorithms for scalable struc-
tured classication. In NIPS Workshop on Structured
Outputs.

PennBioIE. 2005. Mining The Bibliome Project.
http://bioie.ldc.upenn.edu/.

L. R. Rabiner. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285, February.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In Proc. EMNLP.

R. E. Schapire and Y. Singer. 1999. Improved boosting
algorithms using confidence-rated predictions. Ma-
chine Learning, 37(3):1–40.

B. Schölkopf and A. J. Smola. 2002. Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization and Beyond. MIT Press.

F. Sha and F. Pereira. 2003. Shallow parsing with condi-
tional random fields. In Proc. HLT-NAACL.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

E. F. Tjong Kim Sang and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of CoNLL-2003.
http://www.cnts.ua.ac.be/conll2003/ner.

