
Non-projective Dependency Parsing using Spanning Tree Algorithms

Ryan McDonald Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
{ryantm,pereira}@cis.upenn.edu

Kiril Ribarov Jan Haji č
Institute of Formal and Applied Linguistics

Charles University
{ribarov,hajic}@ufal.ms.mff.cuni.cz

Abstract

We formalize weighted dependency pars-
ing as searching for maximum spanning
trees (MSTs) in directed graphs. Using
this representation, the parsing algorithm
of Eisner (1996) is sufficient for search-
ing over all projective trees inO(n3) time.
More surprisingly, the representation is
extended naturally to non-projective pars-
ing using Chu-Liu-Edmonds (Chu and
Liu, 1965; Edmonds, 1967) MST al-
gorithm, yielding anO(n2) parsing al-
gorithm. We evaluate these methods
on the Prague Dependency Treebank us-
ing online large-margin learning tech-
niques (Crammer et al., 2003; McDonald
et al., 2005) and show that MST parsing
increases efficiency and accuracy for lan-
guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-
est lately for applications such as relation extrac-
tion (Culotta and Sorensen, 2004), machine trans-
lation (Ding and Palmer, 2005), synonym genera-
tion (Shinyama et al., 2002), and lexical resource
augmentation (Snow et al., 2004). The primary
reasons for using dependency structures instead of
more informative lexicalized phrase structures is
that they are more efficient to learn and parse while
still encoding much of the predicate-argument infor-
mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to
their arguments, have a long history (Hudson, 1984).
Figure 1 shows a dependency tree for the sentence
John hit the ball with the bat. We restrict ourselves
to dependency tree analyses, in which each word de-
pends on exactly one parent, either another word or a
dummy root symbol as shown in the figure. The tree
in Figure 1 isprojective, meaning that if we put the
words in their linear order, preceded by the root, the
edges can be drawn above the words without cross-
ings, or, equivalently, a word and its descendants
form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-
lyze most sentence types. In fact, the largest source
of English dependency trees is automatically gener-
ated from the Penn Treebank (Marcus et al., 1993)
and is by convention exclusively projective. How-
ever, there are certain examples in which a non-
projective tree is preferable. Consider the sentence
John saw a dog yesterday which was a Yorkshire Ter-
rier. Here the relative clausewhich was a Yorkshire
Terrier and the object it modifies (thedog) are sep-
arated by an adverb. There is no way to draw the
dependency tree for this sentence in the plane with
no crossing edges, as illustrated in Figure 2. In lan-
guages with more flexible word order than English,
such as German, Dutch and Czech, non-projective
dependencies are more frequent. Rich inflection
systems reduce reliance on word order to express



root John saw a dog yesterday which was a Yorkshire Terrier

root O to nové většinou nemá ani zájem a taky na to většinou nemá penı́ze

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Figure 2: Non-projective dependency trees in English and Czech.

grammatical relations, allowing non-projective de-
pendencies that we need to represent and parse ef-
ficiently. A non-projective example from the Czech
Prague Dependency Treebank (Hajič et al., ) is also
shown in Figure 2.

Most previous dependency parsing models have
focused on projective trees, including the work
of Eisner (1996), Collins et al. (1999), Yamada and
Matsumoto (2003), Nivre and Scholz (2004), and
McDonald et al. (2005). These systems have shown
that accurate projective dependency parsers can be
automatically learned from parsed data. However,
non-projective analyses have recently attracted some
interest, not only for languages with freer word order
but also for English. In particular, Wang and Harper
(2004) describe a broad coverage non-projective
parser for English based on a hand-constructed con-
straint dependency grammar rich in lexical and syn-
tactic information. Nivre and Nilsson (2005) pre-
sented a parsing model that allows for the introduc-
tion of non-projective edges into dependency trees
through learned edge transformations within their
memory-based parser. They test this system on
Czech and show improved accuracy relative to a pro-
jective parser. Our approach differs from those ear-
lier efforts in searching optimally and efficiently the
full space of non-projective trees.

The main idea of our method is that dependency
parsing can be formalized as the search for a maxi-
mum spanning tree in a directed graph. This formal-
ization generalizes standard projective parsing mod-
els based on the Eisner algorithm (Eisner, 1996) to
yield efficientO(n2) exact parsing methods for non-
projective languages like Czech. Using this span-
ning tree representation, we extend the work of Mc-
Donald et al. (2005) on online large-margin discrim-

inative training methods to non-projective depen-
dencies.

The present work is related to that of Hirakawa
(2001) who, like us, reduces the problem of depen-
dency parsing to spanning tree search. However, his
parsing method uses a branch and bound algorithm
that is exponential in the worst case, even though
it appears to perform reasonably in limited experi-
ments. Furthermore, his work does not adequately
address learning or measure parsing accuracy on
held-out data.

Section 2 describes an edge-based factorization
of dependency trees and uses it to equate depen-
dency parsing to the problem of finding maximum
spanning trees in directed graphs. Section 3 out-
lines the online large-margin learning framework
used to train our dependency parsers. Finally, in
Section 4 we present parsing results for Czech. The
trees in Figure 1 and Figure 2 are untyped, that
is, edges are not partitioned into types representing
additional syntactic information such as grammati-
cal function. We study untyped dependency trees
mainly, but edge types can be added with simple ex-
tensions to the methods discussed here.

2 Dependency Parsing and Spanning Trees

2.1 Edge Based Factorization

In what follows,x = x1 · · · xn represents a generic
input sentence, andy represents a generic depen-
dency tree for sentencex. Seeingy as the set of tree
edges, we write(i, j) ∈ y if there is a dependency
in y from wordxi to wordxj .

In this paper we follow a common method of fac-
toring the score of a dependency tree as the sum of
the scores of all edges in the tree. In particular, we
define the score of an edge to be the dot product be-



tween a high dimensional feature representation of
the edge and a weight vector,

s(i, j) = w · f(i, j)

Thus the score of a dependency treey for sentence
x is,

s(x,y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

Assuming an appropriate feature representation as
well as a weight vectorw, dependency parsing is the
task of finding the dependency treey with highest
score for a given sentencex.

For the rest of this section we assume that the
weight vectorw is known and thus we know the
scores(i, j) of each possible edge. In Section 3 we
present a method for learning the weight vector.

2.2 Maximum Spanning Trees

We represent the generic directed graphG = (V,E)
by its vertex setV = {v1, . . . , vn} and setE ⊆ [1 :
n]× [1 : n] of pairs(i, j) of directed edgesvi → vj.
Each such edge has a scores(i, j). SinceG is di-
rected,s(i, j) does not necessarily equals(j, i). A
maximum spanning tree (MST) of G is a treey ⊆ E
that maximizes the value

∑

(i,j)∈y
s(i, j) such that

every vertex inV appears iny. The maximumpro-
jective spanning tree ofG is constructed similarly
except that it can only contain projective edges rel-
ative to some total order on the vertices ofG. The
MST problem for directed graphs is also known as
the maximum arborescence problem.

For each sentencex we define the directed graph
Gx = (Vx, Ex) given by

Vx = {x0 = root, x1, . . . , xn}
Ex = {(i, j) : i 6= j, (i, j) ∈ [0 : n] × [1 : n]}

That is,Gx is a graph with the sentence words and
the dummy root symbol as vertices and a directed
edge between every pair of distinct words and from
the root symbol to every word. It is clear that de-
pendency trees forx and spanning trees forGx co-
incide, since both kinds of trees are required to be
rooted at the dummy root and reach all the words
in the sentence. Hence, finding a (projective) depen-
dency tree with highest score is equivalent to finding
a maximum (projective) spanning tree inGx.

Chu-Liu-Edmonds(G, s)
GraphG = (V, E)
Edge weight functions : E → R

1. LetM = {(x∗, x) : x ∈ V, x∗ = arg maxx′ s(x′, x)}
2. LetGM = (V, M)
3. If GM has no cycles, then it is an MST: returnGM

4. Otherwise, find a cycleC in GM

5. LetGC = contract(G, C, s)
6. Lety = Chu-Liu-Edmonds(GC , s)
7. Find a vertexx ∈ C s. t. (x′, x) ∈ y, (x′′, x) ∈ C
8. returny ∪ C − {(x′′, x)}

contract(G = (V, E), C, s)
1. LetGC be the subgraph ofG excluding nodes inC
2. Add a nodec to GC representing cycleC
3. Forx ∈ V − C : ∃x′∈C(x′, x) ∈ E

Add edge(c, x) to GC with
s(c, x) = maxx′∈C s(x′, x)

4. Forx ∈ V − C : ∃x′∈C(x, x′) ∈ E
Add edge(x, c) to GC with

s(x, c) = maxx′∈C [s(x, x′) − s(a(x′), x′) + s(C)]
wherea(v) is the predecessor ofv in C
ands(C) =

P
v∈C

s(a(v), v)
5. returnGC

Figure 3: Chu-Liu-Edmonds algorithm for finding
maximum spanning trees in directed graphs.

2.2.1 Non-projective Trees

To find the highest scoring non-projective tree we
simply search the entire space of spanning trees with
no restrictions. Well-known algorithms exist for the
less general case of finding spanning trees in undi-
rected graphs (Cormen et al., 1990).

Efficient algorithms for the directed case are less
well known, but they exist. We will use here the
Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;
Edmonds, 1967), sketched in Figure 3 follow-
ing Georgiadis (2003). Informally, the algorithm has
each vertex in the graph greedily select the incoming
edge with highest weight. If a tree results, it must be
the maximum spanning tree. If not, there must be a
cycle. The procedure identifies a cycle and contracts
it into a single vertex and recalculates edge weights
going into and out of the cycle. It can be shown that
a maximum spanning tree on the contracted graph is
equivalent to a maximum spanning tree in the orig-
inal graph (Georgiadis, 2003). Hence the algorithm
can recursively call itself on the new graph. Naively,
this algorithm runs inO(n3) time since each recur-
sive call takesO(n2) to find the highest incoming
edge for each word and to contract the graph. There
are at mostO(n) recursive calls since we cannot
contract the graph more thenn times. However,



Tarjan (1977) gives an efficient implementation of
the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for
a sentence,x, we simply construct the graphGx

and run it through the Chu-Liu-Edmonds algorithm.
The resulting spanning tree is the best non-projective
dependency tree. We illustrate here the application
of the Chu-Liu-Edmonds algorithm to dependency
parsing on the simple examplex = John saw Mary,
with directed graph representationGx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

9

30

31

wjs

The new vertexwjs represents the contraction of
verticesJohn andsaw. The edge fromwjs to Mary
is 30 since that is the highest scoring edge from any
vertex inwjs. The edge fromroot into wjs is set to
40 since this represents the score of the best span-
ning tree originating fromroot and including only
the vertices inwjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that an MST in this
graph can be transformed into an MST in the origi-
nal graph (Georgiadis, 2003). Thus, we recursively
call the algorithm on this graph. Note that we need
to keep track of the real endpoints of the edges into
and out ofwjs for reconstruction later. Running the
algorithm, we must find the best incoming edge to
all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge fromwjs to Mary originally was from the
wordsaw, so we include that edge. Furthermore, the
edge fromroot to wjs represented a tree fromroot to
saw to John, so we include all those edges to get the
final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space
of spanning trees is that we have not used any syn-
tactic constraints to guide the search. Many lan-
guages that allow non-projectivity are still primarily
projective. By searching all possible non-projective
trees, we run the risk of finding extremely bad trees.
We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-
ing using edge based factorization can be handled
with the Eisner algorithm (Eisner, 1996). This al-
gorithm has a runtime ofO(n3) and has been em-
ployed successfully in both generative and discrimi-
native parsing models (Eisner, 1996; McDonald et
al., 2005). Furthermore, it is trivial to show that
the Eisner algorithm solves the maximum projective
spanning tree problem.

The Eisner algorithm differs significantly from
the Chu-Liu-Edmonds algorithm. First of all, it is a
bottom-up dynamic programming algorithm as op-
posed to a greedy recursive one. A bottom-up al-
gorithm is necessary for the projective case since it
must maintain the nested structural constraint, which
is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-
ural language dependency parsing can be reduced to
finding maximum spanning trees in directed graphs.
This reduction results from edge-based factoriza-
tion and can be applied to projective languages with



the Eisner parsing algorithm and non-projective lan-
guages with the Chu-Liu-Edmonds maximum span-
ning tree algorithm. The only remaining problem is
how to learn the weight vectorw.

A major advantage of our approach over other
dependency parsing models is its uniformity and
simplicity. By viewing dependency structures as
spanning trees, we have provided a general frame-
work for parsing trees for both projective and non-
projective languages. Furthermore, the resulting
parsing algorithms are more efficient than lexi-
calized phrase structure approaches to dependency
parsing, allowing us to search the entire space with-
out any pruning. In particular the non-projective
parsing algorithm based on the Chu-Liu-Edmonds
MST algorithm providestrue non-projective pars-
ing. This is in contrast to other non-projective meth-
ods, such as that of Nivre and Nilsson (2005), who
implement non-projectivity in apseudo-projective
parser with edge transformations. This formulation
also dispels the notion that non-projective parsing is
“harder” than projective parsing. In fact, it is eas-
ier since non-projective parsing does not need to en-
force the non-crossing constraint of projective trees.
As a result, non-projective parsing complexity is just
O(n2), against theO(n3) complexity of the Eis-
ner dynamic programming algorithm, which by con-
struction enforces the non-crossing constraint.

3 Online Large Margin Learning

In this section, we review the work of McDonald et
al. (2005) for online large-margin dependency pars-
ing. As usual for supervised learning, we assume a
training setT = {(xt,yt)}

T
t=1, consisting of pairs

of a sentencext and its correct dependency treeyt.
In what follows, dt(x) denotes the set of possible
dependency trees for sentencex.

The basic idea is to extend the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2003) to learning with struc-
tured outputs, in the present case dependency trees.
Figure 4 gives pseudo-code for the MIRA algorithm
as presented by McDonald et al. (2005). An on-
line learning algorithm considers a single training
instance at each update tow. The auxiliary vector
v accumulates the successive values ofw, so that the
final weight vector is theaverage of the weight vec-

Training data:T = {(xt, yt)}
T
t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. min
w(i+1) − w(i)


s.t. s(xt, yt) − s(xt, y

′) ≥ L(yt, y
′),∀y

′ ∈ dt(xt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T )

Figure 4: MIRA learning algorithm.

tors after each iteration. This averaging effect has
been shown to help overfitting (Collins, 2002).

On each update, MIRA attempts to keep the new
weight vector as close as possible to the old weight
vector, subject to correctly classifying the instance
under consideration with a margin given by the loss
of the incorrect classifications. For dependency
trees, the loss of a tree is defined to be the number
of words with incorrect parents relative to the correct
tree. This is closely related to the Hamming loss that
is often used for sequences (Taskar et al., 2003).

For arbitrary inputs, there are typically exponen-
tially many possible parses and thus exponentially
many margin constraints in line 4 of Figure 4.

3.1 Single-best MIRA

One solution for the exponential blow-up in number
of trees is to relax the optimization by using only the
single margin constraint for the tree with the highest
score,s(x,y). The resulting online update (to be
inserted in Figure 4, line 4) would then be:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt) − s(xt,y
′) ≥ L(yt,y

′)
wherey

′ = arg maxy′ s(xt,y
′)

McDonald et al. (2005) used a similar update with
k constraints for thek highest-scoring trees, and
showed that small values ofk are sufficient to
achieve the best accuracy for these methods. How-
ever, here we stay with a single best tree becausek-
best extensions to the Chu-Liu-Edmonds algorithm
are too inefficient (Hou, 1996).

This model is related to the averaged perceptron
algorithm of Collins (2002). In that algorithm, the
single highest scoring tree (or structure) is used to
update the weight vector. However, MIRA aggres-
sively updatesw to maximize the margin between



the correct tree and the highest scoring tree, which
has been shown to lead to increased accuracy.

3.2 Factored MIRA

It is also possible to exploit the structure of the out-
put space and factor the exponential number of mar-
gin constraints into a polynomial number of local
constraints (Taskar et al., 2003; Taskar et al., 2004).
For the directed maximum spanning tree problem,
we can factor the output by edges to obtain the fol-
lowing constraints:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(l, j) − s(k, j) ≥ 1
∀(l, j) ∈ yt, (k, j) /∈ yt

This states that the weight of the correct incoming
edge to the wordxj and the weight of all other in-
coming edges must be separated by a margin of 1.
It is easy to show that when all these constraints
are satisfied, the correct spanning tree and all incor-
rect spanning trees are separated by a score at least
as large as the number of incorrect incoming edges.
This is because the scores for all the correct arcs can-
cel out, leaving only the scores for the errors causing
the difference in overall score. Since each single er-
ror results in a score increase of at least 1, the entire
score difference must be at least the number of er-
rors. For sequences, this form of factorization has
been called local lattice preference (Crammer et al.,
2004). Letn be the number of nodes in graphGx.
Then the number of constraints isO(n2), since for
each node we must maintainn − 1 constraints.

The factored constraints are in general more re-
strictive than the original constraints, so they may
rule out the optimal solution to the original prob-
lem. McDonald et al. (2005) examines briefly fac-
tored MIRA for projective English dependency pars-
ing, but for that application,k-best MIRA performs
as well or better, and is much faster to train.

4 Experiments

We performed experiments on the Czech Prague De-
pendency Treebank (PDT) (Hajič, 1998; Hajič et al.,
). We used the predefined training, development
and testing split of this data set. Furthermore, we
used the automatically generated POS tags that are
provided with the data. Czech POS tags are very

complex, consisting of a series of slots that may
or may not be filled with some value. These slots
represent lexical and grammatical properties such as
standard POS, case, gender, and tense. The result
is that Czech POS tags are rich in information, but
quite sparse when viewed as a whole. To reduce
sparseness, our features rely only on the reduced
POS tag set from Collins et al. (1999). The num-
ber of features extracted from the PDT training set
was13, 450, 672, using the feature set outlined by
McDonald et al. (2005).

Czech has more flexible word order than English
and as a result the PDT contains non-projective de-
pendencies. On average,23% of the sentences in
the training, development and test sets have at least
one non-projective dependency. However, less than
2% of total edges are actually non-projective. There-
fore, handling non-projective edges correctly has a
relatively small effect on overall accuracy. To show
the effect more clearly, we created two Czech data
sets. The first, Czech-A, consists of the entire PDT.
The second, Czech-B, includes only the23% of sen-
tences with at least one non-projective dependency.
This second set will allow us to analyze the effec-
tiveness of the algorithms on non-projective mater-
ial. We compared the following systems:

1. COLL1999: The projective lexicalized phrase-structure
parser of Collins et al. (1999).

2. N&N2005: The pseudo-projective parser of Nivre and
Nilsson (2005).

3. McD2005: The projective parser of McDonald et al.
(2005) that uses the Eisner algorithm for both training and
testing. This system usesk-best MIRA withk=5.

4. Single-best MIRA: In this system we use the Chu-Liu-
Edmonds algorithm to find the best dependency tree for
Single-best MIRA training and testing.

5. Factored MIRA: Uses the quadratic set of constraints
based on edge factorization as described in Section 3.2.
We use the Chu-Liu-Edmonds algorithm to find the best
tree for the test data.

4.1 Results

Results are shown in Table 1. There are two main
metrics. The first and most widely recognized isAc-
curacy, which measures the number of words that
correctly identified their parent in the tree.Complete
measures the number of sentences in which the re-
sulting tree was completely correct.

Clearly, there is an advantage in using the Chu-
Liu-Edmonds algorithm for Czech dependency pars-



Czech-A Czech-B
Accuracy Complete Accuracy Complete

COLL1999 82.8 - - -
N&N2005 80.0 31.8 - -
McD2005 83.3 31.3 74.8 0.0

Single-best MIRA 84.1 32.2 81.0 14.9
Factored MIRA 84.4 32.3 81.5 14.3

Table 1: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only sentences
with at least one non-projective dependency.

ing. Even though less than2% of all dependencies
are non-projective, we still see an absolute improve-
ment of up to1.1% in overall accuracy over the
projective model. Furthermore, when we focus on
the subset of data that only contains sentences with
at least one non-projective dependency, the effect
is amplified. Another major improvement here is
that the Chu-Liu-Edmonds non-projective MST al-
gorithm has a parsing complexity ofO(n2), versus
theO(n3) complexity of the projective Eisner algo-
rithm, which in practice leads to improvements in
parsing time. The results also show that in terms
of Accuracy, factored MIRA performs better than
single-best MIRA. However, for the factored model,
we do haveO(n2) margin constraints, which re-
sults in a significant increase in training time over
single-best MIRA. Furthermore, we can also see that
the MST parsers perform favorably compared to the
more powerful lexicalized phrase-structure parsers,
such as those presented by Collins et al. (1999) and
Zeman (2004) that use expensiveO(n5) parsing al-
gorithms. We should note that the results in Collins
et al. (1999) are different then reported here due to
different training and testing data sets.

One concern raised in Section 2.2.1 is that search-
ing the entire space of non-projective trees could
cause problems for languages that are primarily pro-
jective. However, as we can see, this is not a prob-
lem. This is because the model sets its weights with
respect to the parsing algorithm and will disfavor
features over unlikely non-projective edges.

Since the space of projective trees is a subset of
the space of non-projective trees, it is natural to won-
der how the Chu-Liu-Edmonds parsing algorithm
performs on projective data since it is asymptotically
better than the Eisner algorithm. Table 2 shows the
results for English projective dependency trees ex-
tracted from the Penn Treebank (Marcus et al., 1993)
using the rules of Yamada and Matsumoto (2003).

English
Accuracy Complete

McD2005 90.9 37.5
Single-best MIRA 90.2 33.2

Factored MIRA 90.2 32.3

Table 2: Dependency parsing results for English us-
ing spanning tree algorithms.

This shows that for projective data sets, training
and testing with the Chu-Liu-Edmonds algorithm is
worse than using the Eisner algorithm. This is not
surprising since the Eisner algorithm uses the a pri-
ori knowledge that all trees are projective.

5 Discussion

We presented a general framework for parsing de-
pendency trees based on an equivalence to maxi-
mum spanning trees in directed graphs. This frame-
work provides natural and efficient mechanisms
for parsing both projective and non-projective lan-
guages through the use of the Eisner and Chu-Liu-
Edmonds algorithms. To learn these structures we
used online large-margin learning (McDonald et al.,
2005) that empirically provides state-of-the-art per-
formance for Czech.

A major advantage of our models is the abil-
ity to naturally model non-projective parses. Non-
projective parsing is commonly considered more
difficult than projective parsing. However, under
our framework, we show that the opposite is actu-
ally true that non-projective parsing has a lower as-
ymptotic complexity. Using this framework, we pre-
sented results showing that the non-projective model
outperforms the projective model on the Prague De-
pendency Treebank, which contains a small number
of non-projective edges.

Our method requires a tree score that decomposes
according to the edges of the dependency tree. One
might hope that the method would generalize to



include features of larger substructures. Unfortu-
nately, that would make the search for the best tree
intractable (Höffgen, 1993).

Acknowledgments

We thank Lillian Lee for bringing an important
missed connection to our attention, and Koby Cram-
mer for his help with learning algorithms. This work
has been supported by NSF ITR grants 0205448 and
0428193.

References

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph.Science Sinica, 14:1396–
1400.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. 1999.
A statistical parser for Czech. InProc. ACL.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. InProc. EMNLP.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. 1990.In-
troduction to Algorithms. MIT Press/McGraw-Hill.

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems.JMLR.

K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer.
2003. Online passive aggressive algorithms. InProc.
NIPS.

K. Crammer, R. McDonald, and F. Pereira. 2004. New
large margin algorithms for structured prediction. In
Learning with Structured Outputs Workshop (NIPS).

A. Culotta and J. Sorensen. 2004. Dependency tree ker-
nels for relation extraction. InProc. ACL.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InProc. ACL.

J. Edmonds. 1967. Optimum branchings.Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. InProc. COLING.

L. Georgiadis. 2003. Arborescence optimization prob-
lems solvable by Edmonds’ algorithm.Theoretical
Computer Science, 301:427 – 437.

J. Hajič, E. Hajicova, P. Pajas, J. Panevova, P. Sgall, and
B. Vidova Hladka.

J. Hajič. 1998. Building a syntactically annotated cor-
pus: The Prague dependency treebank.Issues of Va-
lency and Meaning, pages 106–132.

H. Hirakawa. 2001. Semantic dependency analysis
method for Japanese based on optimum tree search al-
gorithm. InProc. of PACLING.

Klaus-U. Höffgen. 1993. Learning and robust learning
of product distributions. InProceedings of COLT’93,
pages 77–83.

W. Hou. 1996. Algorithm for finding the first k shortest
arborescences of a digraph.Mathematica Applicata,
9(1):1–4.

R. Hudson. 1984.Word Grammar. Blackwell.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank.Computational Linguistics, 19(2):313–330.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. InProc.
ACL.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. InProc. ACL.

J. Nivre and M. Scholz. 2004. Deterministic dependency
parsing of english text. InProc. COLING.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. InProc. HLT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings.Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. InProc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. InProc. EMNLP.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (CDG) parser. InWorkshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. InProc.
IWPT.

D. Zeman. 2004.Parsing with a Statistical Dependency
Model. Ph.D. thesis, Univerzita Karlova, Praha.


