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Abstract. In this paper we investigate the use of latent variable structured predic-
tion models for fine-grained sentiment analysis in the common situation where
only coarse-grained supervision is available. Specifically, we show how sentence-
level sentiment labels can be effectively learned from document-level supervision
using hidden conditional random fields (HCRFs) [10]. Experiments show that this
technique reduces sentence classification errors by 22% relative to using a lexicon
and 13% relative to machine-learning baselines.1

1 Introduction

Determining the sentiment of a fragment of text is a central task in the field of opinion
classification and retrieval [8]. Most research in this area can be categorized into one of
two categories: lexicon or machine-learning centric. In the former, large lists of phrases
are constructed manually or automatically indicating the polarity of each phrase in the list.
This is typically done by exploiting common patterns in language [2], lexical resources
such as WordNet or thesauri [4], or via distributional similarity [11]. The latter approach
– machine-learning centric – builds statistical text classification models based on labeled
data, often obtained via consumer reviews that have been tagged with an associated
star-rating, e.g., [9]. Both approaches have their strengths and weaknesses. Systems
that rely on lexicons can analyze text at all levels, including fine-grained sentence,
clause and phrase levels, which is fundamental to building user-facing technologies
such as faceted opinion search and summarization [3]. However, lexicons are typically
deployed independent of the context in which mentions occur, often making them brittle,
especially in the face of domain shift and complex syntactic constructions [12]. The
machine-learning approach, on the other hand, can be trained on the millions of labeled
consumer reviews that exist on review aggregation websites, but the supervised learning
signal is often at too coarse a level.

? Part of this work was performed while the author was an intern at Google, Inc. and part was
funded by the Swedish National Graduate School of Language Technology (GSLT).

1 A longer version of this paper containing comprehensive descriptions of the models and
experiments is available at: http://soda.swedish-ict.se/4058.
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We propose a model that learns to analyze fine-grained sentiment strictly from coarse
annotations. Such a model can leverage the plethora of labeled documents from multiple
domains available on the web. In particular, we focus on sentence level sentiment (or
polarity) analysis. As input, the system expects a sentence segmented document and
outputs the corresponding sentence labels. The model we present is based on hidden
conditional random fields (HCRFs) [10], a well-studied latent variable structured learning
model that has been used previously in speech and vision. We show that this model
naturally fits the task and can reduce fine-grained classification errors by over 20%.

Latent-variable structured learning models have been investigated recently in the
context of sentiment analysis. Nakagawa et al. [7] presented a sentence level model with
latent variables placed at the nodes from the syntactic dependency tree of the sentence.
Yessenalina et al. [13], presented a document level model with binary latent variables
over sentences. In both these models, the primary goal was to improve the performance
on the supervised annotated signal. This study inverts the evaluation and attempts to
assess the accuracy of the latent structure induced from the observed coarse signal. In
fact, one could argue that learning fine-grained sentiment from document level labels is
the more relevant question for multiple reasons as 1) document level annotations are the
most common naturally observed sentiment signal, e.g., star-rated consumer reviews,
and 2) document level sentiment analysis is too coarse for most applications, especially
those that rely on aggregation and summarization across fine-grained topics [3].

2 A conditional latent variable model of fine-grained sentiment

The distribution of sentences in documents from our data (Table 2) suggests that doc-
uments contain at least one dominant class, even though they do not have uniform
sentiment. Specifically, positive (negative) documents primarily consist of positive (neg-
ative) sentences as well as a significant number of neutral sentences and a small amount
of negative (positive) sentences. This observation suggests that we would like a model
where sentence level classifications are 1) correlated with the observed document label,
but 2) have the flexibility to disagree when contextual evidence suggests otherwise.

To build such a model, we start with the supervised fine-to-coarse sentiment model
described in [6]. Let d be a document consisting of n sentences, s = (si)

n
i=1. We denote

by yd = (yd,ys) random variables that include the document level sentiment, yd, and
the sequence of sentence level sentiment, ys = (ysi )

n
i=1. All random variables take

values in {POS, NEG, NEU} for positive, negative and neutral sentiment respectively.
We hypothesize that there is a sequential relationship between sentence sentiment and
that the document sentiment is influenced by all sentences (and vice versa). Figure 1a
shows an undirected graphical model reflecting this idea. A first order Markov property
is assumed, according to which each sentence variable ysi is independent of all other
variables, conditioned on the document variable yd and its adjacent sentences, ysi−1/ysi+1.
It was shown in [6] that when trained with fully supervised data, this model can increase
both sentence and document level prediction accuracies.

We are interested in the common case where document labels are available during
training, e.g., from star-rated reviews, but sentence labels are not. A modification to
Figure 1a is to treat all sentence labels as unobserved as shown in Figure 1b. When the
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Fig. 1. a) Outline of graphical model from [6]. b) Identical model with latent sentence level states.
Dark grey nodes are observed variables and white nodes are unobserved. Light grey nodes are
observed at training time. Dashed and dotted regions indicate the maximal cliques at position i.

underlying model from Figure 1a is a conditional random field (CRF) [5], the model in
Figure 1b is often referred to as a hidden conditional random field (HCRF) [10]. HCRFs
are appropriate when there is a strong correlation between the observed coarse label and
the unobserved fine-grained variables, which Table 2 indicates is true for our task.

In the CRF model just outlined, the distribution of the random variables yd =
(yd,ys), conditioned on input sentences s, belongs to the exponential family and is
written pθ(yd,ys|s) = exp

{
〈φ(yd,yd, s), θ〉 −Aθ(s)

}
, where θ is a vector of model

parameters and φ(·) is a vector valued feature function, which by the independence
assumptions of the graphical models outlined in Figure 1, factorizes as φ(yd,ys, s) =
⊕ni=1φ(y

d, ysi , y
s
i−1, s), where ⊕ indicates vector summation. The log-partition function

Aθ(s) is a normalization constant, which ensures that pθ(yd,ys|s) is a proper probability
distribution. In an HCRF, the conditional probability of the observed variables is obtained
by marginalizing over the posited hidden variables: pθ(yd|s) =

∑
ys pθ(y

d,ys|s). As
indicated in Figure 1b, there are two maximal cliques at each position i: one involving
only the sentence si and its corresponding latent variable ysi and one involving the
consecutive latent variables ysi , ysi−1 and the document variable yd. The assignment of
the document variable yd is thus independent of the input s, conditioned on the sequence
of latent sentence variables ys. This is in contrast to the original fine-to-coarse model,
in which the document variable depends directly on the sentence variables as well as
the input [6]. This distinction is important for learning predictive latent variables as it
creates a bottleneck between the input sentences and the document label. When we allow
the document label to be directly dependent on the input, we observe a substantial drop
in sentence level prediction performance.

The feature function at position i is the sum of the feature functions for each clique
at that position, that is φ(yd, ysi , y

s
i−1, s) = φ(yd, ysi , y

s
i−1)⊕ φ(ysi , si). The features of

the clique (ysi , si) include the identities of the tokens in si, the identities and polarities
of tokens in si that match the polarity lexicon described in [12], and the corresponding
number of positive and negative tokens in si. Features for (yd, ysi , y

s
i−1)-cliques only

involve various combinations of the document and sentence sentiment variables.
Typically, when training HCRFs, we find the MAP estimate of the parameters with

respect to the marginal conditional log-likelihood of observed variables, assuming a Nor-
mal prior, p(θ)∼N (0, σ2). However, early experiments indicated that using hard esti-
mation gave slightly better performance. Let D = {(sj , ydj )}mj=1 be a training set of doc-
ument / document-label pairs. In hard HCRF estimation we seek parameters θ such that:
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argmax
θ

|D|∑
j=1

log pθ(y
d
j , ŷ

s
j |sj)−

∥∥θ2∥∥
2σ2

, (1) with: ŷsj = argmax
ys

pθ(y
d
j ,y

s|sj) . (2)

We find the parameters θ that maximizes (1) by stochastic gradient ascent for 75 iter-
ations, with a fixed step size, η. Contrary to a fully observed CRF, equation (1) is not
concave. Still, for the studied data set, results were stable simply by initializing θ to the
zero vector. Equation (2) is also used in predicting the optimal assignment of (yd,ys).
An efficient solution to (2) is provided by the Viterbi algorithm as described in [6].

3 Experiments

For our experiments we constructed a large balanced corpus of consumer reviews from a
range of domains. A training set was created by sampling a total of 143,580 positive,
negative and neutral reviews from five different domains: books, dvds, electronics, music
and videogames. Document sentiment labels were obtained by labeling one and two
star reviews as negative (NEG), three star reviews as neutral (NEU), and four and five
star reviews as positive (POS). The total number of sentences is roughly 1.5 million. To
study the impact of the training set size, additional training sets, denoted S and M, were
created by sampling 1,500 and 15,000 documents from the full training set, denoted
L. A smaller separate test set of 294 reviews was constructed by the same procedure.
This set consists of 97 positive, 98 neutral and 99 negative reviews. Two annotators
marked each test set review sentence as having positive (POS), negative (NEG) or neutral
(NEU) sentiment. NEU was used for sentences that are either truly neutral in opinion,
have mixed positive/negative sentiment or contain no sentiment. Annotation statistics
can be found in Table 1, while Table 2 shows the distribution of sentence level sentiment
for each document sentiment category. Overall raw inter-annotator agreement was 86%
with a Cohen’s κ value of 0.79.2

We compare the HCRF model to two baseline models: 1) VoteFlip, which determines
the polarity of a sentence with the vote-flip algorithm [1], using the polarity lexicon
from [12], and 2) Document as Sentence (DaS), which trains a document classifier on
the coarse-labeled training data, but applies it to sentences independently at test time. In
order to make the underlying statistical models the same, DaS was parameterized as a
log-linear model with a Normal prior distribution and stochastic gradient ascent was used
to find the maximum a posteriori point estimate of the parameters. We also measured
the benefit of observing the document label at test time. This is a common scenario in,
e.g., consumer-review aggregation [3]. The baseline of predicting all sentences with the
observed document label is denoted DocOracle. Ten runs were performed with different
random seeds and results where gathered by hierarchically bootstrapping medians and
confidence intervals, which where also used to test statistical significance.

Table 3 shows results for each model in terms of sentence and document accuracy as
well as F1-scores for each sentence sentiment category. When using enough training data,
the HCRF significantly outperforms all baselines in terms of sentence-level accuracy with

2 The test set is available at http://www.sics.se/people/oscar/datasets.
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POS NEG NEU Total POS NEG NEU Total

Books 19 20 20 59 160 195 384 739
Dvds 19 20 20 59 164 264 371 799
Electronics 19 19 19 57 161 240 227 628
Music 20 20 19 59 183 179 276 638
Videogames 20 20 20 60 255 442 335 1,032

Total 97 99 98 294 923 1,320 1,593 3,836

Table 1. Number of documents per category (left) and number
of sentences per category (right) in the test set for each domain.

POS NEG NEU

POS 0.53 0.08 0.39
NEG 0.05 0.62 0.33
NEU 0.14 0.35 0.51

Table 2. Distribution of sen-
tence labels (columns) in doc-
uments by their labels (rows)
in the test data.

Sentence acc. (S) Sentence acc. (M) Sentence acc. (L) Sentence F1 (L) Document acc. (L)

VoteFlip 41.5 (-1.8, 1.8) 41.5 (-1.8, 1.8) 41.5 (-1.8, 1.8) 45.7 / 48.9 / 28.0 –
DaS 43.8 (-0.9, 0.8) 46.8 (-0.6, 0.7) 47.5 (-0.8, 0.7) 52.1 / 54.3 / 36.0 66.6 (-2.4, 2.2)
HCRF 43.0 (-1.2, 1.3) 49.1 (-1.4, 1.5) 54.4 (-1.0, 1.0) 57.8 / 58.8 / 48.5 64.6 (-2.0, 2.1)
DocOracle 54.8 (-3.0, 3.1) 54.8 (-3.0, 3.1) 54.8 (-3.0, 3.1) 61.1 / 58.5 / 47.0 –
HCRF (obs.) 48.6 (-1.6, 1.4) 54.3 (-1.9, 1.8) 58.4 (-0.8, 0.7) 62.0 / 62.3 / 53.2 –

Table 3. Median and 95% conf. interval for S, M and L training sets. Median F1-scores for
POS/NEG/NEU sentence categories. Bold: significantly better than comparable baselines, p < 0.05.

quite a wide margin. Errors are reduced by 22% relative to the lexicon approach and by
13% compared to the machine learning baseline. When document labels are provided at
test time, the corresponding reductions are 29% and 21%. In the latter case the reduction
compared to the strong DocOracle baseline is only 8%, however, the probabilistic
predictions of the HCRF are more useful than the fixed baseline as illustrated by Figure 2.
In terms of document accuracy, DaS seems to slightly outperform the HCRF. This is
contrary to the results reported in [13], where sentence-level latent variables improved
document predictions. However, our model is restricted when it comes to document
classification, since document variables are conditionally independent of the input. We
observe from Table 3 that all models perform best on positive and negative sentences,
with a sharp drop for neutral sentences, though the drop is substantially less for the HCRF.
This is not surprising, as neutral documents are bad proxies for sentence sentiment, as
can be seen from the sentence sentiment distributions per document category in Table 2.

Adding more training data improves all models and starting with the medium data
set, the HCRF outperforms DaS. While the improvement from additional training data
is relatively small for DaS, the improvement is substantial for the HCRF. We expect
the benefit of using latent variables to increase further with more training data. Finally,
Figure 2 shows sentence-level precision–recall curves for the HCRF, with and without
observed document label, and DaS, together with the fixed points of VoteFlip and DocO-
racle. Label probabilities were calculated using the marginal probability of each label
at each sentence position. The HCRF dominates at nearly all levels of precision/recall,
especially for positive sentences.

Although the results for all systems may seem low, they are comparable with those in
[6], which was a fully supervised model and evaluated with neutral documents excluded.
In fact, the primary reason for the low scores presented here is the inclusion of neutral
documents and sentences. Additional experiments with negative documents excluded
showed that the HCRF achieves a document accuracy of 88.4%, which is on par with
reported state-of-the-art document accuracies for the two-class task [7, 13]. Furthermore,
the annotator agreement of 86% can be viewed as an upper bound on sentence accuracy.
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Fig. 2. Interpolated precision-recall curves for positive and negative sentence level sentiment.

4 Conclusions

In this paper we showed that latent variable structured prediction models can effectively
learn fine-grained sentiment from coarse-grained supervision. Empirically, reductions in
error of up to 20% were observed relative to both lexicon-based and machine-learning
baselines. In the common case when document labels are available at test time as well,
we observed error reductions close to 30% and over 20%, respectively, relative to the
same baselines. In the latter case, our model reduces errors relative to the strongest
baseline with 8%. The model we employed, a hidden conditional random field, leaves
open a number of further avenues for investigating weak prior knowledge in fine-grained
sentiment analysis, most notably semi-supervised learning when small samples of data
annotated with fine-grained information are available.
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