
A Study of Global Inference Algorithms in
Multi-Document Summarization

Ryan McDonald

Google Research
76 Ninth Avenue, New York, NY 10011

ryanmcd@google.com

Abstract. In this work we study the theoretical and empirical properties of var-
ious global inference algorithms for multi-document summarization. We start by
defining a general framework and proving that inference in it is NP-hard. We then
present three algorithms: The first is a greedy approximate method, the second a
dynamic programming approach based on solutions to the knapsack problem, and
the third is an exact algorithm that uses an Integer Linear Programming formula-
tion of the problem. We empirically evaluate all three algorithms and show that,
relative to the exact solution, the dynamic programming algorithm provides near
optimal results with preferable scaling properties.

1 Introduction

Automatically producing summaries from large sources of text is one of the oldest
studied problems in both IR and NLP [9, 17]. The expanding use of mobile devices
and the proliferation of information across the electronic medium makes the need for
such technology imperative. In this paper we study the specific problem of producing
summaries from clusters of related documents – commonly known as multi-document
summarization. In particular, we examine a standard paradigm where summaries are
built by extracting relevant textual units from the documents [6, 12, 15, 22].

When building summaries from multiple documents, systems generally attempt to
optimize three properties,

– Relevance: Summaries should contain informative textual units that are relevant to
the user.

– Redundancy: Summaries should not contain multiple textual units that convey the
same information.

– Length: Summaries are bounded in length.

Optimizing all three properties jointly is a challenging task and is an example of a
global inference problem. This is because the inclusion of relevant textual units relies
not only on properties of the units themselves, but also properties of every other textual
unit in the summary. Unlike single document summarization, redundancy is particularly
important since it is likely that textual units from different documents will convey the
same information. Forcing summaries to obey a length constraint is a common set-up in
summarization as it allows for a fair empirical comparison between different possible

2 Ryan McDonald

outputs [1, 16]. Furthermore, it represents an important “real world” scenario where
summaries are generated in order to be displayed on small screens, such as mobile
devices.

This global inference problem is typically solved in one of two ways. The first is
to optimize relevance and redundancy separately. For example, the work of McKeown
et al. [18] presents a two-stage system in which textual units are initially clustered,
and then representative units are chosen from each cluster to be included into the final
summary. Here, the clustering stage minimizes redundancy and the representative unit
selection maximizes relevance. The second approach is to treat the problem truly as one
of global inference and optimize all criteria in tandem. Goldstein et al. [12] presented
one of the first global models through the use of the maximum marginal relevance
(MMR) criteria, which scores sentences under consideration as a weighted combina-
tion of relevance plus redundancy with sentences already in the summary. Summaries
are then created with an approximate greedy procedure that incrementally includes the
sentence that maximizes this criteria. Currently, greedy MMR style algorithms are the
standard in summarization [6].

More recently, Filatova and Hatzivassiloglou [10] described a novel global model
for their event-based summarization framework and showed that inference within it is
equivalent to a known NP-hard problem. Fortunately this led to availability of approxi-
mate greedy algorithms with proven theoretical guarantees. Daumé et al. [7] formulate
the summarization problem in the structured prediction setting and present a new learn-
ing algorithm that sets model parameters relative to an approximate global inference
algorithm. This method is advantageous since it easily allows for the incorporation of
compression decisions as well. However, it assumes the existence of a training corpus.

In this work we study the theoretical and empirical properties of a variety of global
inference algorithms for multi-document summarization. We start by defining a general
framework and proving that inference in it is NP-hard. We then present and briefly ana-
lyze three inference algorithms. The first is a greedy approximate method that is similar
in nature to the MMR algorithm of Goldstein et al. [12]. The second algorithm is an
approximate dynamic programming approach based on solutions to the knapsack prob-
lem. The third algorithm provides an exact solution to the global inference problem
using an Integer Linear Programming (ILP) formulation. This is feasible due to well
known efficient branch-and-bound algorithms for solving large-scale ILPs. We empir-
ically evaluate all three algorithms and show that, relative to the exact solution, the
dynamic programming algorithm provides near optimal results with preferable scaling
properties.

It is worth noting that the properties of global inference algorithms have been ex-
amined in related fields. Most similar to the current study is the work of Germann et al.
[11]. In that work a number of machine translation inference algorithms were evaluated
in terms of translation quality and CPU usage.

2 Global Inference

As input we are given a document collection D = {D1, . . . , Dk}. Each document
D contains a set of textual units D = {t1, . . . , tm}, which can be words, sentences,

A Study of Global Inference Algorithms in Multi-Document Summarization 3

paragraphs, etc. For simplicity, we represent the document collection simply as the set
of all textual units from all the documents in the collection, i.e., D = {t1, . . . , tn}
where ti ∈ D iff ∃ ti ∈ Dj ∈ D. We let S ⊆ D be the set of textual units constituting
a summary.

We define two primary scoring functions,

1. Rel(i): The relevance of textual unit ti participating in the summary.
2. Red(i, j): The redundancy between textual units ti and tj . Higher values corre-

spond to higher overlap in content.

These scoring functions are completely arbitrary and should be defined by domain
experts. For instance, scores can include a term to indicate similarity to a specific query
for query-focused summarization or include terms involving entities, coherence, do-
main specific features, etc. Scores can also be set by supervised learning algorithms
when training data is available [22].

Finally, we will define the function l(i) to indicate the length of textual unit ti.
Length is also arbitrary and can represent characters, words, phrases, etc. As in most
summarization studies, we assume that as input an integer K, for which the length of
any valid summary cannot exceed.

Formally we can write the multi-document summarization inference problem as
follows:

S = arg max
S⊆D

s(S) (1)

= arg max
S⊆D

∑
ti∈S

Rel(i) −
∑

ti,tj∈S, i<j

Red(i, j)

such that
∑
ti∈S

l(i) ≤ K

We refer to s(S) as the score of summary S. We assume that redundancy scores are
symmetric and the summation of scores is over i < j to prevent counting redundan-
cies multiple times. If desired, we could unevenly weight the relevance and redundancy
scores to prefer one at the expense of the other. It is also worth mentioning that the
redundancy factors in Equation 1 are pairwise. This is a slight deviation from many
systems, in which the redundancy of unit ti is calculated considering the rest of the
summary in its entirety. For now, we have simplified the redundancy factor to a sum
of pairwise relationships because it will allow us to define an Integer Linear Program-
ming formulation in Section 2.2. In turn, this will allow us to compare our approximate
algorithms to an upper bound in performance. In Section 3.4 we discuss alternate for-
mulations to Equation 1.

The formulation presented in Equation 1 is very similar to the classification with
pairwise similarities problem studied by Kleinberg and Tardos [14]. There are also
strong connections to work in Markov random fields as well as information extraction
[21]. One of the primary differences here is the addition of a length constraint. This
formulation also does not specify any ordering preferences on the textual units extracted
for the summary [2]. Such constraints can help make a summary more coherent for the
user. It is possible to determine order as a post-processing stage, but an interesting
extension of this work would be to incorporate them directly into inference.

4 Ryan McDonald

2.1 Global Inference is NP-hard

For completeness we prove here that inference in a global summarization system is
NP-hard through a reduction from 3-D matching (3DM).

3DM: Disjoint sets X, Y, Z each with m distinct elements and a set T ⊆ X×Y ×Z.
Question: is there a subset S ⊆ T such that |S| = m and each v ∈ X ∪ Y ∪ Z occurs
in exactly one element of S?

Reduction: ∀a = (x, y, z) ∈ T , set Rel(a) = 1, otherwise Rel(a) = 0. Further-
more, ∀a = (x, y, z), a′ = (x′, y′, z′) ∈ T set Red(a, a′) = 0 iff x 6= x′ and y 6= y′

and z 6= z′, otherwise s(a, a′) = ∞. Finally, set l(a) = 1 and K = m
Theorem: There is a 3D matching iff the highest scoring summary has a score

of exactly K. Proof: First we observe that if there is a 3DM then the highest scoring
summary will have a score of K. Clearly no summary could have a score greater than
K (due to the length constraint). Furthermore, if we let the summary consist of just the
tuples from the 3DM, the the score will be exactly K since each tuple contributes 1 to
the overall score and there are no −∞ pairwise factors. Next we observe that if there is
a summary of score K, then there must be 3DM. This is easily seen by examining the
tuples returned in the summary. There must be m of them (since K = m). Furthermore,
none of the tuples can overlap, otherwise a pairwise −∞ score would have been added
to the overall score. �

Therefore if we could solve the global inference problem tractably, we could answer
the 3DM problem in polynomial time. It is not difficult to show that the major source of
intractability are the redundancy terms from Equation 1. In fact, it is possible to re-write
the reduction only in term of redundancy scores (i.e., if

∑
i Rel(i) = 0 and K = ∞).

When the redundancy terms are removed (i.e.,
∑

ij Red(i, j) = 0), the problem is still
NP-hard and can be shown to be equivalent to the 0-1 knapsack problem [5]. There
does exist a O(Kn) algorithm for solving the knapsack problem, but this only makes it
pseudo-polynomial, since K is represented as log K bits in the input. However, for the
summarization problem K is typically on the order of hundreds, making such solutions
feasible. We will exploit this fact in Section 2.2.

2.2 Global Inference Algorithms

Greedy Algorithm. A simple approximate procedure to optimizing Equation 1 is to
begin by including highly relevant textual units, and then to iteratively add new units
that maximize the objective. This algorithms is outlined in Figure 1a and is a variant of
MMR style algorithms. The advantage of this algorithm is that it is simple and compu-
tationally efficient. The runtime of this algorithm is in the worst case O(n log n + Kn)
due to the sorting of n items and because each iteration of the loop takes O(n) and
the loop will iterate at most K times. This assumes the unlikely scenario when all sen-
tences have a length of one. In practice, the loop only iterates a small number of times.
We also assume that calculating s(S) is O(1) when it is really a function of loop itera-
tions, which again makes it negligible.

It is not difficult to produce examples for which this greedy procedure will fail. In
particular, the choice of including the most relevant sentence in the summary (Figure 1a,
line 2) can cause error propagation. Consider the case of a very long and highly relevant

A Study of Global Inference Algorithms in Multi-Document Summarization 5

Input: D = {t1, . . . , tn}, K

(a) Greedy Algorithm
1. sort D so that Rel(i) > Rel(i + 1) ∀i
2. S = {t1}
3. while

P
ti∈S l(i) < K

4. tj = arg maxtj∈D−S s(S ∪ {tj})
5. S = S ∪ {tj}
6. return S

(b) Knapsack Algorithm
1. S[i][0] = {} ∀1 ≤ i ≤ n
2. for i: 1 . . . n
3. for k: 1 . . . K
4. S′ = S[i− 1][k]
5. S′′ = S[i− 1][k − l(i)] ∪ {ti}
6. if s(S′) > s(S′′) then
7. S[i][k] = S′

8. else
9. S[i][k] = S′′

10. return arg maxS[n][k], k≤K s(S[n][k])

Fig. 1. (a) A greedy approximate algorithm. (b) A dynamic programming algorithm based on
solutions to the knapsack problem.

sentence. This sentence may contain a lot of relevant information, but it may also con-
tain a lot of noise. Including this sentence in the summary will help maximize relevance
at the cost of limiting the amount of remaining space for other sentences. This scenario
does in fact happen frequently when summarizing news, where sentence length is typ-
ically very long. Ideally, we would prefer a shorter sentence – possibly from another
document – that contains similar information, but is more compact.

Dynamic Programming Algorithm. To alleviate this problem we devise a dynamic
programming solution. Recall that the input to the problem is a set of textual units,
D = {t1, . . . , tn}, and an integer K. Let S[i][k], where i ≤ n and k ≤ K, be a
high scoring summary of exactly length k that can only contain textual units in the set
{t1, . . . , ti}. Figure 1b provides an algorithm for filling in this table. This algorithm is
based on a solution to the 0-1 knapsack problem [5]. In that problem the goal is to fill
a knapsack of capacity K with a set of items, each having a certain weight and value.
The optimal solution maximizes the overall value of selected items without the total
weight of these items exceeding K. Clearly if one could ignore the redundancy terms
in Equation 1, the summarization problem and knapsack problem would be equivalent,
i.e., value equals relevance and weight equals length. Of course, redundancy terms are
critical when constructing summaries and we cannot ignore them.

The crux of the algorithm is in lines 4-10. To populate S[i][k] of the table, we con-
sider two possible summaries. The first is S[i− 1][k], which is a high scoring summary
of length k using textual units {t1, . . . , ti−1}. The second is a high scoring summary of
length k − l(i) plus the current unit ti. S[i][k] is then set to which ever one has high-
est score. The knapsack problem is structured so that the principle of optimality holds.
That is, if for i′ < i and k′ ≤ k, if S[i′][k′] stores the optimal solution, then S[i][k]
will also store the optimal solution. However, the additional redundancy factors in the
multi-document summarization problem, which are included in the score calculations
of line 6, break this principle making this solution only approximate for our purposes.
The final line of the algorithm simply looks for the highest scoring summary within the
length bound and returns it.

6 Ryan McDonald

The advantage of using a knapsack style algorithm is that it eliminates the errors
caused by the greedy algorithm inserting longer sentences and limiting the space for
future inclusions. Consider the trivial example with three items, A, B, and C, where
Rel(A) = 3, Rel(B) = 2, Rel(C) = 2, l(A) = 4, l(B) = 3, l(C) = 2, K = 5, and all
redundancy factors are 0. The greedy algorithms will include just A, but the knapsack
algorithm will return the optimal solution of B and C.

The runtime of this algorithm is O(n log n + Kn) if we again assume that s(S) ∈
O(1). However, this time K is not a worst-case scenario, but a fixed lower-bound on
runtime. Even so, most summarization systems typically set K on the order of 100
to 500, making such solution easily computable (see Section 3). Note also that the
correctness of the algorithm as given in Figure 1 is based on the assumption that there
is a valid summary of every length k ≤ K. It is not difficult to modify the algorithm
and remove this assumption by checking that both S′ and S′′ truly have a length of k.

One additional augmentation that can be made to both the greedy and knapsack
algorithms is the inclusion of a beam during inference. This was implemented but found
to have little impact on performance unless a beam of substantial size was used, which
resulted in a increase in run-time.

ILP Formulation. It would be desirable to compare the previous two algorithms with
an exact solution to determine how much accuracy is lost due to approximations. For-
tunately there is a method to do this in our framework through the use of Integer Linear
Programming (ILP). ILP techniques have been used in the past to solve many intractable
inference problems in both IR and NLP. This includes applications to relation and en-
tity classification [21], sentence compression [4], temporal link analysis [3], as well as
syntactic and semantic parsing [19, 20].

An ILP is a constrained optimization problem, where both the cost function and
constraints are linear in a set of integer variables. Solving arbitrary ILPs is an NP-hard
problem. However, ILPs are a well studied optimization problem with efficient branch
and bound algorithms for finding the optimal solution. Modern commercial ILP solvers
can typically solve moderately large optimizations in a matter of seconds. We use the
GNU Linear Programming kit1, which is a free optimization package.

The multi-document global inference problem can be formulated as the ILP in Fig-
ure 2. In this formulation we include indicator variables αi and αij , which are 1 when
a textual unit or pairs of textual units are included in a summary. The goal of the ILP
is to set these indicator variables to maximize the payoff subject to a set of constraints
that guarantee the validity of the solution. The first constraint simply states that the in-
dicator variables are binary. The second constraint states that for all sentences included
in the summary, the sum of their lengths must be less than our predefined maximum.
Constraints (3) to (5) ensure a valid solution. Constraints (3) and (4) simply state that if
the summary includes both the units ti and tj then we have to include them individually
as well. Constraint (5) is the inverse of (3) and (4).

1 http://www.gnu.org/software/glpk/

A Study of Global Inference Algorithms in Multi-Document Summarization 7

maximize
P

i αiRel(i)−
P

i<j αijRed(i, j)

such that ∀i, j: (1) αi, αij ∈ {0, 1} (4) αij − αj ≤ 0
(2)

P
i αil(i) ≤ K (5) αi + αj − αij ≤ 1

(3) αij − αi ≤ 0

Fig. 2. ILP formulation of global inference.

2.3 Implementation Details

When implementing each algorithm it is important for the scale of the score functions
to be comparable. Otherwise, the algorithms will naturally favor either relevancy or re-
dundancy. Furthermore, there are quadratically many redundancy factors in a summary
score compared to relevance factors. Depending on the scoring functions this can lead to
summaries with a small number of very long sentences or a lot of very short sentences.
One way to avoid this is to add new constraints specifying a desired range for sentence
lengths. Alternatively, we found that replacing every score with its z-score alleviated
many of these problems since that guaranteed both positive and negative values. When
scores are predominantly negative, then the algorithms return summaries much shorter
than K. This is simply fixed by changing the constraints to force summary lengths to
be between K-c and K, where c is some reasonably sized constant.

In the ILP formulation, the number of constraints is quadratic in the total number
of textual units. Furthermore, the coefficient matrix of this problem is not unimodular
[21]. As a result, the ILP algorithm does not scale well (see Section 3 for more on this).
To alleviate this problem, each algorithm passed through a preprocessing stage that
sorted all textual units by relevance. Every textual unit not in the top 100 was discarded
as unlikely to be in the final summary. In this way, all algorithms ran under the same
conditions.

3 Experiments

In this study we used sentences as textual units. Each textual unit, document and doc-
ument collection is represented as a bag-of-words vector with tf*idf values. Length
bounds are always in terms of words. In addition to the three algorithms described in
this paper, we also ran a very simple baseline that is identical to the greedy algorithm,
but does not include redundancy when scoring summaries.

We ran two primary sets of experiments, the first is on generic summarization and
the second query-focused summarization. Results are reported using the ROUGE eval-
uation package [16]. ROUGE is a n-gram recall metric for an automated summary rela-
tive to a set of valid reference summaries. We report ROUGE-1 and ROUGE-2 scores,
which capture unigram and bigram recall. We set the ROUGE evaluation package to
use stemming and hard length bounds.

8 Ryan McDonald

(a)
Summary Length

50 100 200
Baseline 26.6 / 5.3 33.0 / 6.8 39.4 / 9.6
Greedy 26.8 / 5.1 33.5 / 6.9 40.1 / 9.5
Knapsack 27.9 / 5.9 34.8 / 7.3 41.2 / 10.0
ILP 28.1 / 5.8 34.6 / 7.2 41.5 / 10.3

(b)
Original Alternate

Baseline 34.4 / 5.4 34.4 / 5.4
Greedy 35.0 / 5.7 35.6 / 6.1
Knapsack 35.7 / 6.2 36.5 / 6.7
ILP 35.8 / 6.1 N/A

Table 1. (a) Results for generic summarization experiments using DUC 2002 data set. Each
cell contains the ROUGE-1 and 2 scores (R1 / R2). (b) Results for query-focused summariza-
tion experiments using DUC 2005 data set. Original: Using original inference formulation from
Equation 1. Alternate: Using alternate inference formulation from Section 3.4.

3.1 Generic Experiments

In this general setting, a system is given a document collection D, and length bound K,
and is asked to produce a summary that is most representative of the entire document
collection. For these experiments, we used the DUC 2002 data set [13]. This data set
contained 59 document collections, each having at least one manually created summary
for lengths 50, 100, 200. We define the score functions as follows:

Rel(i) = POS(ti, D)−1 + SIM(ti,D) (where ti ∈ D and D ∈ D)

Red(i, j) = SIM(ti, tj)

where POS(t, D) is the position of textual unit t in document D and SIM(a, b) is the
cosine similarity between two vectors. Relevance scores prefer sentences that are near
the beginning of documents and are maximally informative about the entire document
collection. Again, these score functions are general and we only use these particular
scoring criteria for simplicity and because we evaluate our approach on news stories2.

Results are shown in Table 1a. The first thing to note is that incorporating redun-
dancy information does improve scores, verifying previous work [10, 12]. Next, we see
that scores for the sub-optimal knapsack algorithm are very near scores for the exact ILP
algorithm and are even sometimes slightly better. This is due to the fact that redundancy
scores are highly influential in the ILP solution. Highly relevant, but semantically dif-
ferent, sentences will often contain identical terms (i.e., person names or places). These
sentences are then forced to compete with one another when constructing the summary,
when it may be desirable to include them both. The final point we will make is that
the greedy algorithms performance is consistently lower than the knapsack algorithm.
An analysis of the resulting summaries suggests that indeed long sentences are getting
included early, making it difficult to add relevant sentences later in the procedure.

2 Preferring sentences near the beginning of documents is a typical requirement for summarizing
news.

A Study of Global Inference Algorithms in Multi-Document Summarization 9

0 100 200 300 400 500
Number of Textual Units Considered

0

50

100

150

200

250

300

Se
co

nd
s

Greedy
Knapsack
ILP

Fig. 3. Plots average number of seconds to summarize a document collection as a function of the
number of textual units considered.

3.2 Query-focused Experiments

The query-focused setting requires summaries to be relevant to a particular query that
has been supplied by the user. For these experiments, we used the DUC 2005 data sets
[6]. This data consists of 50 document collections, each with a corresponding query. For
each collection and query, multiple manually constructed summaries of 250 words were
provided. The redundancy score of the system remained unchanged from the previous
experiment. However, for a document collection D and query Q, the relevance score
was changed to the following:

Rel(i) = SIM(ti, Q) + SIM(ti,D)

Thus, relevance is an equally weighted combination of similarity to the query and simi-
larity to the entire document collection. Results are shown in Table 1b under the column
Original. Again we see that the knapsack algorithm outperforms the greedy algorithm
and has a score comparable to the ILP system.

3.3 Scaling Experiments

For the experiments just presented, inference was always only over data sets with less
than 100 document collections, each with less than 100 documents, each document with
10 to 50 sentences. In practice, these algorithms should handle much larger data sets in
order to be applied to real world problems such as summarizing search results. To test
inference scalability, we restricted the number of textual units under consideration for a
summary to 20, 50, 100 and 500, then measured the CPU time for each algorithm. Re-
sults are shown in Figure 3. This figure plots average number of seconds to summarize
a document collection as a function of the number of textual units under consideration.

10 Ryan McDonald

It is clear that the ILP solution is feasible for small problems, but scales super-
linearly making it an unlikely solution for larger tasks. On the other hand, both the
greedy and knapsack solutions scale linearly with the size of the problem, which is not
surprising given their runtime analysis. In fact, the greedy algorithms runtime is nearly
constant, since overhead from preprocessing steps accounts for most of the CPU time.

3.4 Alternate Formulations

The global inference formulation given in Equation 1 has two primary motivations. The
first is that it is a reasonably intuitive objective function. The second is that it allowed
for an exact ILP formulation, which was necessary to test the approximate algorithms
relative to an exact solution. One advantage of the approximate algorithms is that they
can work with any definition of the score of a summary. For example, in query-focused
summarization we might prefer the following:

s(S) = SIM(S, Q) + SIM(S, D)

Here the score of a summary is just the similarity of the summary to the query plus
the similarity to the entire document collection. This looks similar to using Equation 1
under the definition of relevance from Section 3.2. However, now relevance is measured
as the similarity of the entire summary to the query and document collection, instead of
just the sum over each unit. There are also no explicit redundancy terms, as redundancy
is managed by the similarity of the summary to the document collection (i.e., highly
redundant summaries will match less content of the entire collection). As a result, this
formulation is much simpler and concerns over scaling relevance and redundancy scores
are non-existent. An ILP solution to this particular formulation is not possible since
scores do not naturally factorize by textual units.

Results for the query-focused experiments are presented in Table 1b under the col-
umn Alternate. These results display an additional advantage of the knapsack algo-
rithm over greedy and ILP solutions. Note that the performance of the baseline does
not change, since this algorithm still uses the original definition of sentence relevance
in isolation when producing summaries.

Other scoring functions are of possible. However, we found that most did not im-
prove upon our original formulation from Equation 1.

4 Conclusions

In this work we studied three algorithms for global inference in multi-document sum-
marization. We found that a dynamic programming algorithm based on solutions to the
knapsack problem provided optimal accuracy and scaling properties, relative to both a
greedy algorithm and an exact algorithm that uses Integer Linear Programming. Ad-
ditionally, the greedy and knapsack algorithms are compatible with arbitrary scoring
functions, which can benefit performance.

We have already begun to extend the algorithms presented here to jointly extract and
compress sentences for summary inclusion using a sentence compressor similar to the
one described by Dorr et al. [8]. Early results are promising and show that compression
decisions are greatly improved with the knowledge of other sentences in the summary.

A Study of Global Inference Algorithms in Multi-Document Summarization 11

References

1. Document Understanding Conference (DUC). http://duc.nist.gov.
2. R. Barzilay, N. Elhadad, and K. McKeown. Inferring Strategies for Sentence Ordering in

Multidocument News Summarization. Journal of Artificial Intelligence Research, 17:35–55,
2002.

3. P. Bramsen, P. Deshpande, Y.K. Lee, and R. Barzilay. Inducing temporal graphs. In Pro-
ceedings of the Empirical Methods in Natural Language Processing (EMNLP), 2006.

4. J. Clarke and M. Lapata. Constraint-based sentence compression: An integer programming
approach. In Proceedings of the Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2006.

5. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill, 1990.

6. H.T. Dang. Overview of duc 2005. In Proceedings of the Document Understanding Confer-
ence (DUC), 2005. http://duc.nist.gov.

7. H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction. 2006. In
Submission.

8. B. Dorr, D. Zajic, and R. Schwartz. Hedge: A parse-and-trim approach to headline gen-
eration. In Proceedings of the HLT-NAACL Text Summarization Workshop and Document
Understanding Conference (DUC), 2003.

9. H.P. Edmundson. New methods in automatic extracting. Journal of the Association for
Computing Machinery, 1(23), 1968.

10. E. Filatova and V. Hatzivassiloglou. A formal model for information selection in multi-
sentence text extraction. In Proceedings of the International Conference on Computational
Linguistics (COLING), 2004.

11. U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Yamada. Fast decoding and optimal
decoding for machine translation. Artificial Intelligence, 154(1-2):127–143.

12. J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz. Multi-document summarization by
sentence extraction. In Proceedings of the ANLP/NAACL Workshop on Automatic Summa-
rization, 2000.

13. U. Hahn and D. Harman, editors. Proceedings of the Document Understanding Conference
(DUC), 2002. http://duc.nist.gov.

14. J. Kleinberg and E. Tardos. Approximation Algorithms for Classification Problems with
Pairwise Relationships: Metric Labeling and Markov Random Fields. Journal of the Associ-
ation for Computing Machinery, 49(5):616–639, 2002.

15. J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In Proceeding of
the Annual Conference of the ACM Special Interest Group on Information Retrieval (SIGIR),
1995.

16. C.Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram cooccurrence statis-
tics. In Proceedings of the Joint Conference on Human Language Technology and North
American Chapter of the Association for Computational Linguistics (HLT/NAACL), 2003.

17. P.H. Luhn. The automatic creation of literature abstracts. IBM Journal of Research and
Development, 2(2), 1959.

18. K. McKeown, J. Klavansn, V. Hatzivassiloglou, R. Barzilay, and Eleazar Eskin. Towards
multidocument summarization by reformation: Progress and prospects. In Proceedings of
the Annual Conference of the American Association for Artificial Intelligence (AAAI), 1999.

19. V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Semantic role labeling via integer linear
programming inference. In Proceedings of the International Conference on Computational
Linguistics (COLING), 2004.

12 Ryan McDonald

20. S. Riedel and J. Clarke. Incremental integer linear programming for non-projective depen-
dency parsing. In Proceedings of the Empirical Methods in Natural Language Processing
(EMNLP), 2006.

21. D. Roth and W. Yih. A linear programming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Conference on Computational Natural Language Learn-
ing (CoNLL), 2004.

22. S. Teufel and M. Moens. Sentence extraction as a classification task. In Proceedings of the
ACL/EACL Workshop on Intelligent Scalable Text Summarizaion, 1997.

