
Online Learning of Approximate Dependency Parsing Algorithms

Ryan McDonald Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{ryantm,pereira}@cis.upenn.edu

Abstract

In this paper we extend the maximum
spanning tree (MST) dependency parsing
framework of McDonald et al. (2005c)
to incorporate higher-order feature rep-
resentations and allow dependency struc-
tures with multiple parents per word.
We show that those extensions can make
the MST framework computationally in-
tractable, but that the intractability can be
circumvented with new approximate pars-
ing algorithms. We conclude with ex-
periments showing that discriminative on-
line learning using those approximate al-
gorithms achieves the best reported pars-
ing accuracy for Czech and Danish.

1 Introduction

Dependency representations of sentences (Hud-
son, 1984; Meĺčuk, 1988) model head-dependent
syntactic relations as edges in a directed graph.
Figure 1 displays a dependency representation for
the sentence John hit the ball with the bat. This
sentence is an example of a projective (or nested)
tree representation, in which all edges can be
drawn in the plane with none crossing. Some-
times non-projective representations are preferred,
as in the sentence in Figure 2.1 In particular, for
freer-word order languages, non-projectivity is a
common phenomenon since the relative positional
constraints on dependents is much less rigid. The
dependency structures in Figures 1 and 2 satisfy
the tree constraint: they are weakly connected
graphs with a unique root node, and each non-root
node has a exactly one parent. Though trees are

1Examples are drawn from McDonald et al. (2005c).

more common, some formalisms allow for words
to modify multiple parents (Hudson, 1984).

Recently, McDonald et al. (2005c) have shown
that treating dependency parsing as the search
for the highest scoring maximum spanning tree
(MST) in a graph yields efficient algorithms for
both projective and non-projective trees. When
combined with a discriminative online learning al-
gorithm and a rich feature set, these models pro-
vide state-of-the-art performance across multiple
languages. However, the parsing algorithms re-
quire that the score of a dependency tree factors
as a sum of the scores of its edges. This first-order
factorization is very restrictive since it only allows
for features to be defined over single attachment
decisions. Previous work has shown that condi-
tioning on neighboring decisions can lead to sig-
nificant improvements in accuracy (Yamada and
Matsumoto, 2003; Charniak, 2000).

In this paper we extend the MST parsing frame-
work to incorporate higher-order feature represen-
tations of bounded-size connected subgraphs. We
also present an algorithm for acyclic dependency
graphs, that is, dependency graphs in which a
word may depend on multiple heads. In both cases
parsing is in general intractable and we provide
novel approximate algorithms to make these cases
tractable. We evaluate these algorithms within
an online learning framework, which has been
shown to be robust with respect approximate in-
ference, and describe experiments displaying that
these new models lead to state-of-the-art accuracy
for English and the best accuracy we know of for
Czech and Danish.

2 Maximum Spanning Tree Parsing

Dependency-tree parsing as the search for the
maximum spanning tree (MST) in a graph was

root John saw a dog yesterday which was a Yorkshire Terrier

Figure 2: An example non-projective dependency structure.

root

hit

John ball with

the bat

the

root0 John1 hit2 the3 ball4 with5 the6 bat7

Figure 1: An example dependency structure.

proposed by McDonald et al. (2005c). This formu-
lation leads to efficient parsing algorithms for both
projective and non-projective dependency trees
with the Eisner algorithm (Eisner, 1996) and the
Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;
Edmonds, 1967) respectively. The formulation
works by defining the score of a dependency tree
to be the sum of edge scores,

s(x,y) =
∑

(i,j)∈y

s(i, j)

where x = x1 · · · xn is an input sentence and y

a dependency tree for x. We can view y as a set
of tree edges and write (i, j) ∈ y to indicate an
edge in y from word xi to word xj . Consider the
example from Figure 1, where the subscripts index
the nodes of the tree. The score of this tree would
then be,

s(0, 2) + s(2, 1) + s(2, 4) + s(2, 5)
+ s(4, 3) + s(5, 7) + s(7, 6)

We call this first-order dependency parsing since
scores are restricted to a single edge in the depen-
dency tree. The score of an edge is in turn com-
puted as the inner product of a high-dimensional
feature representation of the edge with a corre-
sponding weight vector,

s(i, j) = w · f(i, j)

This is a standard linear classifier in which the
weight vector w are the parameters to be learned
during training. We should note that f(i, j) can be
based on arbitrary features of the edge and the in-
put sequence x.

Given a directed graph G = (V,E), the maxi-
mum spanning tree (MST) problem is to find the
highest scoring subgraph of G that satisfies the
tree constraint over the vertices V . By defining
a graph in which the words in a sentence are the
vertices and there is a directed edge between all
words with a score as calculated above, McDon-
ald et al. (2005c) showed that dependency pars-
ing is equivalent to finding the MST in this graph.
Furthermore, it was shown that this formulation
can lead to state-of-the-art results when combined
with discriminative learning algorithms.

Although the MST formulation applies to any
directed graph, our feature representations and one
of the parsing algorithms (Eisner’s) rely on a linear
ordering of the vertices, namely the order of the
words in the sentence.

2.1 Second-Order MST Parsing

Restricting scores to a single edge in a depen-
dency tree gives a very impoverished view of de-
pendency parsing. Yamada and Matsumoto (2003)
showed that keeping a small amount of parsing
history was crucial to improving parsing perfor-
mance for their locally-trained shift-reduce SVM
parser. It is reasonable to assume that other pars-
ing models might benefit from features over previ-
ous decisions.

Here we will focus on methods for parsing
second-order spanning trees. These models fac-
tor the score of the tree into the sum of adjacent
edge pair scores. To quantify this, consider again
the example from Figure 1. In the second-order
spanning tree model, the score would be,

s(0,−, 2) + s(2,−, 1) + s(2,−, 4) + s(2, 4, 5)
+ s(4,−, 3) + s(5,−, 7) + s(7,−, 6)

Here we use the second-order score function
s(i, k, j), which is the score of creating a pair of
adjacent edges, from word xi to words xk and xj .
For instance, s(2, 4, 5) is the score of creating the
edges from hit to with and from hit to ball. The
score functions are relative to the left or right of
the parent and we never score adjacent edges that
are on different sides of the parent (for instance,

there is no s(2, 1, 4) for the adjacent edges from
hit to John and ball). This independence between
left and right descendants allow us to use a O(n3)
second-order projective parsing algorithm, as we
will see later. We write s(xi,−, xj) when xj is
the first left or first right dependent of word xi.
For example, s(2,−, 4) is the score of creating a
dependency from hit to ball, since ball is the first
child to the right of hit. More formally, if the word
xi0 has the children shown in this picture,

xi0

xi1 . . . xij xij+1 . . . xim

the score factors as follows:

∑j−1
k=1 s(i0, ik+1, ik) + s(i0,−, ij)

+ s(i0,−, ij+1) +
∑m−1

k=j+1 s(i0, ik, ik+1)

This second-order factorization subsumes the
first-order factorization, since the score function
could just ignore the middle argument to simulate
first-order scoring. The score of a tree for second-
order parsing is now

s(x,y) =
∑

(i,k,j)∈y

s(i, k, j)

where k and j are adjacent, same-side children of
i in the tree y.

The second-order model allows us to condition
on the most recent parsing decision, that is, the last
dependent picked up by a particular word, which
is analogous to the the Markov conditioning of in
the Charniak parser (Charniak, 2000).

2.2 Exact Projective Parsing

For projective MST parsing, the first-order algo-
rithm can be extended to the second-order case, as
was noted by Eisner (1996). The intuition behind
the algorithm is shown graphically in Figure 3,
which displays both the first-order and second-
order algorithms. In the first-order algorithm, a
word will gather its left and right dependents in-
dependently by gathering each half of the subtree
rooted by its dependent in separate stages. By
splitting up chart items into left and right com-
ponents, the Eisner algorithm only requires 3 in-
dices to be maintained at each step, as discussed in
detail elsewhere (Eisner, 1996; McDonald et al.,
2005b). For the second-order algorithm, the key
insight is to delay the scoring of edges until pairs

2-order-non-proj-approx(x, s)
Sentence x = x0 . . . xn, x0 = root
Weight function s : (i, k, j) → R

1. Let y = 2-order-proj(x, s)
2. while true
3. m = −∞, c = −1, p = −1
4. for j : 1 · · ·n
5. for i : 0 · · · n
6. y

′ = y[i → j]
7. if ¬tree(y′) or ∃k : (i, k, j) ∈ y continue
8. δ = s(x,y′) − s(x,y)
9. if δ > m

10. m = δ, c = j, p = i
11. end for
12. end for
13. if m > 0
14. y = y[p → c]
15. else return y

16. end while

Figure 4: Approximate second-order non-
projective parsing algorithm.

of dependents have been gathered. This allows for
the collection of pairs of adjacent dependents in
a single stage, which allows for the incorporation
of second-order scores, while maintaining cubic-
time parsing.

The Eisner algorithm can be extended to an
arbitrary mth-order model with a complexity of
O(nm+1), for m > 1. An mth-order parsing al-
gorithm will work similarly to the second-order al-
gorithm, except that we collect m pairs of adjacent
dependents in succession before attaching them to
their parent.

2.3 Approximate Non-projective Parsing

Unfortunately, second-order non-projective MST
parsing is NP-hard, as shown in appendix A. To
circumvent this, we designed an approximate al-
gorithm based on the exact O(n3) second-order
projective Eisner algorithm. The approximation
works by first finding the highest scoring projec-
tive parse. It then rearranges edges in the tree,
one at a time, as long as such rearrangements in-
crease the overall score and do not violate the tree
constraint. We can easily motivate this approxi-
mation by observing that even in non-projective
languages like Czech and Danish, most trees are
primarily projective with just a few non-projective
edges (Nivre and Nilsson, 2005). Thus, by start-
ing with the highest scoring projective tree, we are
typically only a small number of transformations
away from the highest scoring non-projective tree.

The algorithm is shown in Figure 4. The ex-
pression y[i → j] denotes the dependency graph
identical to y except that xj’s parent is xi instead

FIRST-ORDER
h1

h3

⇒

h1 r r+1 h3

(A)

h1

h3

h1 h3

(B)

SECOND-ORDER
h1

h2 h2 h3

⇒

h1 h2 h2 r r+1 h3

(A)

h1

h2 h2 h3

⇒

h1 h2 h2 h3

(B)

h1

h3

h1 h3

(C)

Figure 3: A O(n3) extension of the Eisner algorithm to second-order dependency parsing. This figure
shows how h1 creates a dependency to h3 with the second-order knowledge that the last dependent of
h1 was h2. This is done through the creation of a sibling item in part (B). In the first-order model, the
dependency to h3 is created after the algorithm has forgotten that h2 was the last dependent.

of what it was in y. The test tree(y) is true iff the
dependency graph y satisfies the tree constraint.

In more detail, line 1 of the algorithm sets y to
the highest scoring second-order projective tree.
The loop of lines 2–16 exits only when no fur-
ther score improvement is possible. Each iteration
seeks the single highest-scoring parent change to
y that does not break the tree constraint. To that
effect, the nested loops starting in lines 4 and 5
enumerate all (i, j) pairs. Line 6 sets y

′ to the de-
pendency graph obtained from y by changing xj’s
parent to xi. Line 7 checks that the move from y

to y
′ is valid by testing that xj’s parent was not al-

ready xi and that y
′ is a tree. Line 8 computes the

score change from y to y
′. If this change is larger

than the previous best change, we record how this
new tree was created (lines 9-10). After consid-
ering all possible valid edge changes to the tree,
the algorithm checks to see that the best new tree
does have a higher score. If that is the case, we
change the tree permanently and re-enter the loop.
Otherwise we exit since there are no single edge
switches that can improve the score.

This algorithm allows for the introduction of
non-projective edges because we do not restrict
any of the edge changes except to maintain the
tree property. In fact, if any edge change is ever
made, the resulting tree is guaranteed to be non-
projective, otherwise there would have been a
higher scoring projective tree that would have al-
ready been found by the exact projective parsing
algorithm. It is not difficult to find examples for
which this approximation will terminate without
returning the highest-scoring non-projective parse.

It is clear that this approximation will always

terminate — there are only a finite number of de-
pendency trees for any given sentence and each it-
eration of the loop requires an increase in score
to continue. However, the loop could potentially
take exponential time, so we will bound the num-
ber of edge transformations to a fixed value M .
It is easy to argue that this will not hurt perfor-
mance. Even in freer-word order languages such
as Czech, almost all non-projective dependency
trees are primarily projective, modulo a few non-
projective edges. Thus, if our inference algorithm
starts with the highest scoring projective parse, the
best non-projective parse only differs by a small
number of edge transformations. Furthermore, it
is easy to show that each iteration of the loop takes
O(n2) time, resulting in a O(n3 + Mn2) runtime
algorithm. In practice, the approximation termi-
nates after a small number of transformations and
we do not need to bound the number of iterations
in our experiments.

We should note that this is one of many possible
approximations we could have made. Another rea-
sonable approach would be to first find the highest
scoring first-order non-projective parse, and then
re-arrange edges based on second order scores in
a similar manner to the algorithm we described.
We implemented this method and found that the
results were slightly worse.

3 Danish: Parsing Secondary Parents

Kromann (2001) argued for a dependency formal-
ism called Discontinuous Grammar and annotated
a large set of Danish sentences using this formal-
ism to create the Danish Dependency Treebank
(Kromann, 2003). The formalism allows for a

root Han spejder efter og ser elefanterne

He looks for and sees elephants

Figure 5: An example dependency tree from
the Danish Dependency Treebank (from Kromann
(2003)).

word to have multiple parents. Examples include
verb coordination in which the subject or object is
an argument of several verbs, and relative clauses
in which words must satisfy dependencies both in-
side and outside the clause. An example is shown
in Figure 5 for the sentence He looks for and sees
elephants. Here, the pronoun He is the subject for
both verbs in the sentence, and the noun elephants
the corresponding object. In the Danish Depen-
dency Treebank, roughly 5% of words have more
than one parent, which breaks the single parent
(or tree) constraint we have previously required
on dependency structures. Kromann also allows
for cyclic dependencies, though we deal only with
acyclic dependency graphs here. Though less
common than trees, dependency graphs involving
multiple parents are well established in the litera-
ture (Hudson, 1984). Unfortunately, the problem
of finding the dependency structure with highest
score in this setting is intractable (Chickering et
al., 1994).

To create an approximate parsing algorithm
for dependency structures with multiple parents,
we start with our approximate second-order non-
projective algorithm outlined in Figure 4. We use
the non-projective algorithm since the Danish De-
pendency Treebank contains a small number of
non-projective arcs. We then modify lines 7-10
of this algorithm so that it looks for the change in
parent or the addition of a new parent that causes
the highest change in overall score and does not
create a cycle2. Like before, we make one change
per iteration and that change will depend on the
resulting score of the new tree. Using this sim-
ple new approximate parsing algorithm, we train a
new parser that can produce multiple parents.

4 Online Learning and Approximate
Inference

In this section, we review the work of McDonald
et al. (2005b) for online large-margin dependency

2We are not concerned with violating the tree constraint.

parsing. As usual for supervised learning, we as-
sume a training set T = {(xt,yt)}

T
t=1, consist-

ing of pairs of a sentence xt and its correct depen-
dency representation yt.

The algorithm is an extension of the Margin In-
fused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003) to learning with structured outputs,
in the present case dependency structures. Fig-
ure 6 gives pseudo-code for the algorithm. An on-
line learning algorithm considers a single training
instance for each update to the weight vector w.
We use the common method of setting the final
weight vector as the average of the weight vec-
tors after each iteration (Collins, 2002), which has
been shown to alleviate overfitting.

On each iteration, the algorithm considers a
single training instance. We parse this instance
to obtain a predicted dependency graph, and find
the smallest-norm update to the weight vector w
that ensures that the training graph outscores the
predicted graph by a margin proportional to the
loss of the predicted graph relative to the training
graph, which is the number of words with incor-
rect parents in the predicted tree (McDonald et al.,
2005b). Note that we only impose margin con-
straints between the single highest-scoring graph
and the correct graph relative to the current weight
setting. Past work on tree-structured outputs has
used constraints for the k-best scoring tree (Mc-
Donald et al., 2005b) or even all possible trees by
using factored representations (Taskar et al., 2004;
McDonald et al., 2005c). However, we have found
that a single margin constraint per example leads
to much faster training with a negligible degrada-
tion in performance. Furthermore, this formula-
tion relates learning directly to inference, which is
important, since we want the model to set weights
relative to the errors made by an approximate in-
ference algorithm. This algorithm can thus be
viewed as a large-margin version of the perceptron
algorithm for structured outputs Collins (2002).

Online learning algorithms have been shown
to be robust even with approximate rather than
exact inference in problems such as word align-
ment (Moore, 2005), sequence analysis (Daumé
and Marcu, 2005; McDonald et al., 2005a)
and phrase-structure parsing (Collins and Roark,
2004). This robustness to approximations comes
from the fact that the online framework sets
weights with respect to inference. In other words,
the learning method sees common errors due to

Training data: T = {(xt, yt)}
T
t=1

1. w(0) = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. min
‚

‚

‚
w(i+1) − w(i)

‚

‚

‚

s.t. s(xt, yt; w(i+1))

−s(xt, y
′; w(i+1)) ≥ L(yt, y

′)

where y
′ = arg maxy′ s(xt, y

′; w(i))

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T)

Figure 6: MIRA learning algorithm. We write
s(x,y; w(i)) to mean the score of tree y using
weight vector w(i).

approximate inference and adjusts weights to cor-
rect for them. The work of Daumé and Marcu
(2005) formalizes this intuition by presenting an
online learning framework in which parameter up-
dates are made directly with respect to errors in the
inference algorithm. We show in the next section
that this robustness extends to approximate depen-
dency parsing.

5 Experiments

The score of adjacent edges relies on the defini-
tion of a feature representation f(i, k, j). As noted
earlier, this representation subsumes the first-order
representation of McDonald et al. (2005b), so we
can incorporate all of their features as well as the
new second-order features we now describe. The
old first-order features are built from the parent
and child words, their POS tags, and the POS tags
of surrounding words and those of words between
the child and the parent, as well as the direction
and distance from the parent to the child. The
second-order features are built from the following
conjunctions of word and POS identity predicates

xi-pos, xk-pos, xj-pos
xk-pos, xj-pos
xk-word, xj-word
xk-word, xj-pos
xk-pos, xj-word

where xi-pos is the part-of-speech of the ith word
in the sentence. We also include conjunctions be-
tween these features and the direction and distance
from sibling j to sibling k. We determined the use-
fulness of these features on the development set,
which also helped us find out that features such as
the POS tags of words between the two siblings
would not improve accuracy. We also ignored fea-

English
Accuracy Complete

1st-order-projective 90.7 36.7
2nd-order-projective 91.5 42.1

Table 1: Dependency parsing results for English.

Czech
Accuracy Complete

1st-order-projective 83.0 30.6
2nd-order-projective 84.2 33.1

1st-order-non-projective 84.1 32.2
2nd-order-non-projective 85.2 35.9

Table 2: Dependency parsing results for Czech.

tures over triples of words since this would ex-
plode the size of the feature space.

We evaluate dependencies on per word accu-
racy, which is the percentage of words in the sen-
tence with the correct parent in the tree, and on
complete dependency analysis. In our evaluation
we exclude punctuation for English and include it
for Czech and Danish, which is the standard.

5.1 English Results

To create data sets for English, we used the Ya-
mada and Matsumoto (2003) head rules to ex-
tract dependency trees from the WSJ, setting sec-
tions 2-21 as training, section 22 for development
and section 23 for evaluation. The models rely
on part-of-speech tags as input and we used the
Ratnaparkhi (1996) tagger to provide these for
the development and evaluation set. These data
sets are exclusively projective so we only com-
pare the projective parsers using the exact projec-
tive parsing algorithms. The purpose of these ex-
periments is to gauge the overall benefit from in-
cluding second-order features with exact parsing
algorithms, which can be attained in the projective
setting. Results are shown in Table 1. We can see
that there is clearly an advantage in introducing
second-order features. In particular, the complete
tree metric is improved considerably.

5.2 Czech Results

For the Czech data, we used the predefined train-
ing, development and testing split of the Prague
Dependency Treebank (Hajič et al., 2001), and the
automatically generated POS tags supplied with
the data, which we reduce to the POS tag set
from Collins et al. (1999). On average, 23% of
the sentences in the training, development and
test sets have at least one non-projective depen-
dency, though, less than 2% of total edges are ac-

Danish
Precision Recall F-measure

2nd-order-projective 86.4 81.7 83.9
2nd-order-non-projective 86.9 82.2 84.4

2nd-order-non-projective w/ multiple parents 86.2 84.9 85.6

Table 3: Dependency parsing results for Danish.

tually non-projective. Results are shown in Ta-
ble 2. McDonald et al. (2005c) showed a substan-
tial improvement in accuracy by modeling non-
projective edges in Czech, shown by the difference
between two first-order models. Table 2 shows
that a second-order model provides a compara-
ble accuracy boost, even using an approximate
non-projective algorithm. The second-order non-
projective model accuracy of 85.2% is the highest
reported accuracy for a single parser for these data.
Similar results were obtained by Hall and Nóvák
(2005) (85.1% accuracy) who take the best out-
put of the Charniak parser extended to Czech and
rerank slight variations on this output that intro-
duce non-projective edges. However, this system
relies on a much slower phrase-structure parser
as its base model as well as an auxiliary rerank-
ing module. Indeed, our second-order projective
parser analyzes the test set in 16m32s, and the
non-projective approximate parser needs 17m03s
to parse the entire evaluation set, showing that run-
time for the approximation is completely domi-
nated by the initial call to the second-order pro-
jective algorithm and that the post-process edge
transformation loop typically only iterates a few
times per sentence.

5.3 Danish Results

For our experiments we used the Danish Depen-
dency Treebank v1.0. The treebank contains a
small number of inter-sentence and cyclic depen-
dencies and we removed all sentences that con-
tained such structures. The resulting data set con-
tained 5384 sentences. We partitioned the data
into contiguous 80/20 training/testing splits. We
held out a subset of the training data for develop-
ment purposes.

We compared three systems, the standard
second-order projective and non-projective pars-
ing models, as well as our modified second-order
non-projective model that allows for the introduc-
tion of multiple parents (Section 3). All systems
use gold-standard part-of-speech since no trained
tagger is readily available for Danish. Results are
shown in Figure 3. As might be expected, the non-

projective parser does slightly better than the pro-
jective parser because around 1% of the edges are
non-projective. Since each word may have an ar-
bitrary number of parents, we must use precision
and recall rather than accuracy to measure perfor-
mance. This also means that the correct training
loss is no longer the Hamming loss. Instead, we
use false positives plus false negatives over edge
decisions, which balances precision and recall as
our ultimate performance metric.

As expected, for the basic projective and non-
projective parsers, recall is roughly 5% lower than
precision since these models can only pick up at
most one parent per word. For the parser that can
introduce multiple parents, we see an increase in
recall of nearly 3% absolute with a slight drop in
precision. These results are very promising and
further show the robustness of discriminative on-
line learning with approximate parsing algorithms.

6 Discussion

We described approximate dependency parsing al-
gorithms that support higher-order features and
multiple parents. We showed that these approxi-
mations can be combined with online learning to
achieve fast parsing with competitive parsing ac-
curacy. These results show that the gain from al-
lowing richer representations outweighs the loss
from approximate parsing and further shows the
robustness of online learning algorithms with ap-
proximate inference.

The approximations we have presented are very
simple. They start with a reasonably good baseline
and make small transformations until the score
of the structure converges. These approximations
work because freer-word order languages we stud-
ied are still primarily projective, making the ap-
proximate starting point close to the goal parse.
However, we would like to investigate the benefits
for parsing of more principled approaches to ap-
proximate learning and inference techniques such
as the learning as search optimization framework
of (Daumé and Marcu, 2005). This framework
will possibly allow us to include effectively more
global features over the dependency structure than

those in our current second-order model.

Acknowledgments

This work was supported by NSF ITR grants
0205448.

References

E. Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. NAACL.

D.M. Chickering, D. Geiger, and D. Heckerman. 1994.
Learning bayesian networks: The combination of
knowledge and statistical data. Technical Report
MSR-TR-94-09, Microsoft Research.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

M. Collins and B. Roark. 2004. Incremental parsing
with the perceptron algorithm. In Proc. ACL.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann.
1999. A statistical parser for Czech. In Proc. ACL.

M. Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. EMNLP.

K. Crammer and Y. Singer. 2003. Ultraconservative
online algorithms for multiclass problems. JMLR.

H. Daum é and D. Marcu. 2005. Learning as search op-
timization: Approximate large margin methods for
structured prediction. In Proc. ICML.

J. Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

J. Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proc. COL-
ING.

J. Hajič, E. Hajicova, P. Pajas, J. Panevova, P. Sgall, and
B. Vidova Hladka. 2001. The Prague Dependency
Treebank 1.0 CDROM. Linguistics Data Consor-
tium Cat. No. LDC2001T10.

K. Hall and V. N óv ák. 2005. Corrective modeling for
non-projective dependency parsing. In Proc. IWPT.

R. Hudson. 1984. Word Grammar. Blackwell.

M. T. Kromann. 2001. Optimaility parsing and local
cost functions in discontinuous grammars. In Proc.
FG-MOL.

M. T. Kromann. 2003. The danish dependency tree-
bank and the dtag treebank tool. In Proc. TLT.

R. McDonald, K. Crammer, and F. Pereira. 2005a.
Flexible text segmentation with structured multil-
abel classification. In Proc. HLT-EMNLP.

R. McDonald, K. Crammer, and F. Pereira. 2005b. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
2005c. Non-projective dependency parsing using
spanning tree algorithms. In Proc. HLT-EMNLP.

I.A. Meĺčuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

R. Moore. 2005. A discriminative framework for bilin-
gual word alignment. In Proc. HLT-EMNLP.

J. Nivre and J. Nilsson. 2005. Pseudo-projective de-
pendency parsing. In Proc. ACL.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In Proc. EMNLP.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
Proc. IWPT.

A 2nd-Order Non-projective MST
Parsing is NP-hard

Proof by a reduction from 3-D matching (3DM).
3DM: Disjoint sets X, Y, Z each with m distinct elements

and a set T ⊆ X×Y ×Z. Question: is there a subset S ⊆ T
such that |S| = m and each v ∈ X∪Y ∪Z occurs in exactly
one element of S.

Reduction: Given an instance of 3DM we define a graph
in which the vertices are the elements from X ∪ Y ∪ Z as
well as an artificial root node. We insert edges from root to
all xi ∈ X as well as edges from all xi ∈ X to all yi ∈ Y
and zi ∈ Z. We order the words s.t. the root is on the left
followed by all elements of X , then Y , and finally Z. We
then define the second-order score function as follows,

s(root, xi, xj) = 0, ∀xi, xj ∈ X
s(xi,−, yj) = 0, ∀xi ∈ X, yj ∈ Y
s(xi, yj , zk) = 1, ∀(xi, yj , zk) ∈ T

All other scores are defined to be −∞, including for edges
pairs that were not defined in the original graph.

Theorem: There is a 3D matching iff the second-order
MST has a score of m. Proof: First we observe that no tree
can have a score greater than m since that would require more
than m pairs of edges of the form (xi, yj , zk). This can only
happen when some xi has multiple yj ∈ Y children or mul-
tiple zk ∈ Z children. But if this were true then we would
introduce a −∞ scored edge pair (e.g. s(xi, yj , y

′

j)). Now, if
the highest scoring second-order MST has a score of m, that
means that every xi must have found a unique pair of chil-
dren yj and zk which represents the 3D matching, since there
would be m such triples. Furthermore, yj and zk could not
match with any other x′

i since they can only have one incom-
ing edge in the tree. On the other hand, if there is a 3DM, then
there must be a tree of weight m consisting of second-order
edges (xi, yj , zk) for each element of the matching S. Since
no tree can have a weight greater than m, this must be the
highest scoring second-order MST. Thus if we can find the
highest scoring second-order MST in polynomial time, then
3DM would also be solvable. �

