
A Distributed Social MUD

to Enhance Reliability and Scalability

Ryan McDonald and Nick Montfort
{ryantm,nickm}@cis.upenn.edu

23 April 2003

Abstract

MUD (Multiple User Dungeon) systems are client-server. When the single
server goes down, everyone is kicked off and no one can log on. Also, even
if there are only a handful of people talking in a given room, a large overall
number of users can slow the server and cause lag (higher latency) which
makes fluent communication impossible. We introduce Happy Fun MUD, a
distributed, peer-to-peer MUD that implements the essential communication
commands of simulated online worlds. A gateway allows peers to load the
map and to enter the first room. Peers can then move about; the first
peer in a given room is designated its innkeeper. The innkeepers coordinate
activity between rooms in the MUD. When an innkeeper leaves a room, the
responsibility is assigned to someone else, if there is anyone left in that room.
Peers send what they say directly to other local peers; they whisper private
messages directly to the peer who is addressed in the communication. The
system is more robust to the failure of peers or the gateway than the client-
server system is to a server failure. The busiest node is also much less busy
than is the server in the client-server system.

1 Why Create a Distributed Social MUD?

1.1 MUDs Are Social Worlds

A MUD is an all-text virtual environment. It is called a Multiple User “Dungeon” after a free
Fortran version of the interactive fiction Zork that was released in 1979, called Dungeon. Although
many people think of puzzle-solving and fantasy quests in relation to MUDs, it is actually the “mul-
tiple user” aspect that makes them appealing to many people. Many MUDs serve as social spaces
where people have the same sorts of conversations they do “in real life,” talking with friends on the
phone or chatting with coworkers at the water cooler. The simulated world that the MUD provides

1

allows for persistent objects that can be part of this communication process — the most important
objects in MUDs are often things like guest books, which different users can sign, rather than
things like magic swords. There are plenty of specific examples of MUDs and MOOs that are used
for social and communication purposes. These include systems for education, learning, and aca-
demic events, including LinguaMOO, TecfaMOO, MOOSE Crossing, ExploreNet, and Penn’s very
own PennMOO. These educational MUDs and MOOs do not always host round-the-clock socializ-
ing, but many systems do. One prominent example is the famous and much-studied environment
LambdaMOO, which has been around for more than a decade.

1.2 Bogged Down in the MUD

The online worlds currently made available to users in MUD and MOO (MUD Object Oriented)
systems are implemented using a client-server architecture. This has proven effective enough in
many cases, but with this architecture, there are problems with the reliability of such systems.
When the single server goes down, everyone who is online is kicked off and no one can log on to use
the system. There are also problems with scalability to large numbers of users. This difficulty is
particularly seen during popular events (such events are hosted on many MUDs) and during peak
times. Even if there are only a handful of people talking in a given room, the large number of
people on the MUD or MOO, throughout the whole environment, can bog down the server, which
is a bottleneck through which all communication must pass. As the load on the server grows, lag
(higher latency) appears and can, at a certain level, make fluent communication impossible. This
defeats the main purpose of social MUDs.

In dealing with the reliability and scalability of MUDs and MOOs, we focus on the communication
aspects of simulated online worlds. Some MUDs do feature combat, magic, and quests. Many online
simulated worlds exist mainly to facilitate communication among users, however. They provide the
advantages of a simulated space rather than a simple “channel” for chat, so that many users prefer
chatting in a MUD to using Instant Messenger or IRC. We focus on ways that distributed systems
can improve reliability and scalability in these sorts of social environments, using a simple text-
based MUD system tailored to communication among users. Rather than optimizing for behaviors
like exploring the entire simulated world (which are actually uncommon on MUDs), we optimize
for the various sorts of communication between users that make up most of the activity in social
MUDs.

1.3 New Social Spaces

Improving the reliability and scalability is important since users are bothered by the failure of a
server or high levels of lag. One motivation for a distributed implementation is simply to make
existing communication-based MUDs more robust, so that they do not suffer as much from server
failures and high loads.

However, a distributed implementation might also allow new sorts of online social worlds to arise.
Many of the chat-based MUDs that are in use today host little more than one or two dozen users
at a time, but they are tiny islands in a network of many such systems. Proprietary MMORPGs

2

(Massively Multiplayer Online Role-Playing Games) such as EverQuest and Anarchy Online already
have tens of thousands of users online at once. We can’t be certain of what social MUD users might
want, but it’s reasonable to think that people not as interested in quests might still enjoy having
a large, distributed, chat-based MUD where different rooms and areas would host different groups
and conversations that they could move between seamlessly. With the advent of wireless networks,
people also might wish to join local chat-based MUDs at conferences, coffeehouses, or parks. This
might provide another motivation for using a peer-to-peer architecture rather than a client-server
architecture: no central server would have to handle the flow of communications between people
in these more spontaneous virtual environments. While the system we present does require one
or more known, fixed processes to act as gateways, we hope it is a step toward more fluid way of
establishing virtual environments that might be appealing to users in these sorts of situations, and
perhaps even in surprising new ways.

2 Introducing Happy Fun MUD

We have designed and implemented Happy Fun MUD, a very simplified MUD system in Java.
The implementation includes the most basic, essential features of more complex systems such as
LambdaMoo (C), PerlMUD 2.1 (Perl), and WolfMUD (Java). We chose not to modify the open-
source Java system WolfMUD because of its strong role-playing game orientation. Some essential
features of chat-based MUDs that are important to our project (such as the ability to whisper and
communicate something privately to another user) are not implemented in that system.

To make the project tractable, we implemented only a very small subset of MUD features. For
instance, the ability to create new characters, change passwords, and manage characters is not
implemented; we simply allow anyone to enter a name and log on as that character. (At present,
there is not even a way of requiring users to use unique names.) Similarly, the ability to add new
rooms and objects is not implemented; there is a hard-coded map instead. Because we are focusing
on communication issues, matters of mutual exclusion for access to objects was not a priority, and
although we describe one way this could be accomplished, we have not implemented such exclusive
access to objects. Instead, we have focused on implementing the ability for characters to move
between rooms, to notice who else is in the room, to speak to one another publicly within the
room, to speak privately to one another by whispering, and to say something to everyone in the
entire MUD by hollering. We are also not interesting in scaling to larger and increasing more
complex simulated worlds; Happy Fun MUD would not be very good at that since each peer keeps
track of the entire state of the “physical” environment, remaining unaware only of what users are
in remote areas and what they are saying. The sort of scalability we are interested in involves
handling very large numbers of users in a reasonably-sized simulated world that can host many
large, concurrent conversations.

Happy Fun MUD is implemented over TCP/IP. Although there are several cases in which multicast
would be the most effective way of communicating, such as when a peer wishes to transmit a “say”
message to everyone in the room, the practical difficulties with UDP multicast recommended against
using it. First, many machines have multicast disabled, as we have found out in trying to complete
another CIS 505 project. Also, when multicast is enabled, it is often only practical to use it
within local area networks by setting the TTL (time to live) to a low number, to avoid accidentally

3

overlapping with other multicast groups on the Internet. We wanted Happy Fun MUD to use only
those technologies which are practical for and easily available to ordinary users. With firewalls in
place today, it is difficult enough for many people to even use services on non-standard ports; we
certainly did not want to implement a system intended for casual, widespread use that had even
more esoteric networking requirements.

The system is composed of two runnable Java classes and two helper classes. It can run on any
Internet-connected computer that has a Java VM.

2.1 MUDGateway

The first runnable class is MUDGateway. This is the server that allows entry into the MUD. To
connect to the MUD, a peer logs on through the gateway and is able to establish communication
with other peers. This is the only time when information is sent from the gateway to a peer.

As implemented, this gateway process is a single point of failure — of a certain sort. If it fails, no
one can log onto the MUD until it is brought back up. However, people can stay on the MUD,
move about, and talk to one another even if the gateway does go down, which is an improvement
over the client-server system. Also, it would be fairly simple to replicate the gateway so that if one
gateway process failed, peers could still connect to the MUD using another one.

2.2 MUDPeer

The MUD is peer-to-peer, with each user’s computer having a complete map of the simulated world.
All peers run by executing the same runnable class, MUDPeer. This peer replaces a MUD client
such as Pueblo that is the current way MUD users connect to a server.

The MUD relies on designated peers called innkeepers to coordinate movement between rooms
and to broadcast statements that are hollered. Every inhabited room has an innkeeper. The first
character entering an empty room is designated the innkeeper of that room. This peer hands that
responsibility to another peer when he or she leaves, unless the room is then empty. The identity
of the innkeeper is unimportant to the user and is not even made visible. Public speech is sent
locally by peers to the peers of other characters in the room, while private speech is sent directly
to the peer of the addressee. When a person chooses to holler (that is, to say something that the
whole MUD will hear, as with the @wall command in PerlMUD) a message is relayed via the local
innkeeper to other innkeepers, and from there to other players.

Movement between rooms is managed through the innkeepers; if a user, exploring the MUD, moves
out of a room, that user’s peer gets the innkeeper list before departing. On entering a new room,
if the room is inhabited, that user’s peer notifies the new room’s innkeeper and is able to join the
room. If, on the other hand, the user finds that there are no others in the room, the user’s peer
will declare itself an innkeeper. The identities of the innkeepers are known to everyone so that, for
instance, an innkeeper in a busy room can be replaced if that peer drops its connection. However,
each peer only needs to keep track of the innkeepers and the others in the same room, not everyone

4

1

2

3

Gateway

Gateway

Gateway

Figure 1: A snapshot of Happy Fun MUD. In general, rooms in a MUD do not need to be ar-
ranged in a grid; they are just shown this way so as to make it easy to illustrate different sorts of
communication and the role of innkeepers. The peers that are innkeepers are shown in black.

who is online.

One advantage of this sort of distributed setup is that any peers who are not influencing the state
of the world do not have to message others. Looking at the surroundings, reading books, and
undertaking other sorts of action that are not destructive or reconfiguring does not have to involve
any sort of network traffic at all.

Figure 1 shows one possible MUD configuration. One peer is attempting to enter the MUD by
sending a request for the current state of the simulated world and the innkeeper list to the gateway
server (some machine running MUDGateway). Nine peers are seen who are currently in the MUD,
distributed throughout three different rooms. In room one, a private communication (whisper)

5

is occurring between two peers. In room three, a local communication is occurring where one
peer is using “say” to speak to everyone else in the room. Both of these communications happen
directly between peers. This should reinforce the idea that innkeepers do not behave as servers
for a room; most messages do not travel through the innkeeper before reaching the desired peer or
peers. Essentially, an innkeeper’s main purpose is to always know exactly one occupant of every
inhabited room, specifically, the innkeeper of all those rooms. This way peers may move to different
rooms and have the ability to communicate with at least one peer in that room in order to learn
the rest of the room’s occupants. To maintain an up-to-date innkeeper list, all innkeepers are sent
a message each time a rooms innkeeper changes.

The circumstances under which messages are sent in Happy Fun MUD are described in Appendix
A. The format of messages is described in Appendix B.

2.3 Failure Modes

2.3.1 Non-innkeeper Peer Failures

Ideally, the innkeeper would poll everyone in room at some regular interval, checking with them if
they have been idle (as far as public behaviors go) during the previous interval of time. If there
was no reply, the player list would be modified and a new player list to everyone in the room.
This would prevent “zombies” — entities that seem like other players but are really just crashed
or disconnected peers — from hanging around. However, the presence of such zombies is only an
annoyance, and does not prevent other communication from taking place, nor does it make the
MUD unstable.

In the current system, a peer that has crashed or disconnected without properly exiting is not
detected until there is a change of innkeeper for the room. At this point, to avoid handing off the
innkeeper responsibility to a crashed peer, the old innkeeper checks to see which of the peers it is
possible to connect to. The updated player list is then sent to all the peers in the room, including
the new innkeeper

2.3.2 Innkeeper Failures

In the current system, if an innkeeper crashes the corresponding room is essentially doomed. Peers
trying to enter that room will also fail. However, other regions of the MUD will not suffer from this
failure. We describe a scheme whereby the failure of an innkeeper could be tolerated. It involves
using the gateway (or set of gateways) to enable mutual exclusion. As a practical matter, when
a richer simulated world is desired in an actual MUD, it will be necessary to implement mutual
exclusion for other reasons — to control the state and ensure that a unique object is not held by
more than one individual peer, for instance. The following describes a way the gateway can be
used to provide a room lock and allow a single peer to become innkeeper:

If a peer cannot reach the innkeeper of the room it is in,

6

PEER to GATEWAY: Request room lock
If room is not locked,
GATEWAY to PEER: Reply with room lock (which times out after a certain time t)
If room lock obtained, peer designates itself as innkeeper and
PEER to ALL INNKEEPERS & GATEWAY: Current innkeeper list

2.3.3 Gateway Failures

If the gateway fails, no one can join the MUD. However, the gateways can themselves be replicated,
which will resolve this problem as long as one gateway remains up. Although the use of the
gateway as a source of mutual exclusion and consistency control is easiest to imagine if there is a
single gateway, a scheme for distributed control could be used in the case where there are many
gateways. For instance, a single gateway could first obtain a room lock among all the gateways by
use of a token ring, and that gateway could then reply by granting the lock while ensuring mutual
exclusion. Essentially, this idea would push off the need for mutual exclusion to the more well-
behaved, simpler, and almost certainly more stable gateways; a scheme that involved coordinating
only among the peers would not be necessary.

3 Results

3.1 Reliability Testing

As described aove, the system as implemented was not intended to be robust to innkeeper failures.
However, existing users should have been able to survive a gateway failure and continue interacting
on the MUD. Also, the failure of a non-innkeeper peer should not have any affect on communications
among other peers. We did tests to show that these sorts of failure were tolerated.

We first loaded the system with eight peers and took down peers one at a time, terminating each
processes by interrupting it rather than by exiting properly, until only one was left. At each point we
ensured that other peers could move around, enter and leave rooms with other people in them, and
speak to others publicly and privately, as long as there was anyone else left. We did not terminate
an innkeeper process during this test. A separate test showed that a failure of an innkeeper, while
it would make communication impossible in the room that the innkeeper was responsible for, would
not affect other peers that were elsewhere in the MUD. In a real implementation, the failure of an
innkeeper would need to be tolerated to a greater extent.

Also, we ran the system with the usual single gateway and we logged several peers onto the MUD.
We then interrupted the gateway process. No one was able to join to MUD after this was done, but
the system continued to work for all peers who were already logged on. One improvement would
involve making it possible for the gateway to be restarted without having all peers exit the MUD.
Although this did not seem extremely difficult, we left this for future work, which could also involve
replicating the gateway so that a single failure would not make the MUD inaccessible.

7

3.2 Comparison of Network Traffic

To determine how our system compared to the usual client-server sort of MUD, we tried a similar
communication situation with three, six, and nine users on both a PerlMUD server running on an
IRCS computer and our own system, Happy Fun MUD, running on the GE cluster. We had the
users go to three different rooms (which hosted one, two, or three users at the different stages of
the experiment) and had them undertake a mix of communications (whisper, say, and holler) that
represented a realistic mix of social actions in a MUD. Users whispered most frequently, said things
to the whole room half as often, and hollered things to the whole MUD only 1

3 as often as they
said things. If anything, our mix of communications overstates how often global communication is
employed — many MUDs do not even allow ordinary users to speak to the entire MUD at once,
and when they do, this type of speech is usually employed very infrequently, to call for help or to
tell other users that the system is going down. However, although we had users move to different
rooms initially, we did not cover the case of manipulating objects or otherwise changing the state
of the simulated world. We monitored the number of packets handled by the PerlMUD server using
IPTraf, a network analysis program for Linux that provided statistics on every packet handled
through every socket. We wrote additional code to have our peers report every packet they sent
or received, since IPTraf could only be run as root and therefore was not available to us for use on
the GE machines. We only went up to a load of nine users because our peers had to each run run
on a separate machine and only eleven of the GE machines had their hostnames correctly spelled
in their config files and could be used with our MUDPeer code.

We had expected that with 9 users logged on in three different rooms, overall network traffic in
our system (neglecting the initial load of data from the gateway) would be about the same as
the server’s traffic on a client-server MUD, but that the individual groups of peers will have three
times less traffic. Specifically, we thought the nodes handling the most traffic (the innkeepers)
should have significantly less traffic than the server does in a similar client-server system. We were
pleasantly surprised. Not only was the maximum traffic per node significantly less for Happy Fun
MUD than was the server traffic on PerlMUD; the rate of growth was also lower. PerlMUD’s server
traffic grew steeply, while the busiest peer in Happy Fun MUD experienced only a linear increase
in traffic.

3.3 Optimizing for Communication

Our system performs extremely well when users are communicating with one another and under-
taking the sorts of MUD or MOO behaviors that we have optimized for. We should emphasize,
however, that the peer-to-peer system we have implemented, and the concept behind it, is not ap-
propriate in all situations. If players constantly move around the MUD, staying in different rooms
and manipulating the environment so as to alter it (for instance, by picking up and dropping items),
each peer will constantly be sending updates to every other peer. There will be no advantage seen
in this sort of situation in terms of lower traffic — although even here, the reliability benefit will
be present.

However, we do not observe these sorts of behaviors in MUDs and MOOs such as LambdaMOO.
Instead, communicating with others turns out to be the most important, frequent activity, and

8

PACKETS
HANDLED

700

600

500

400

300

200

100

0

PerlMUD Server

Happy Fun MUD Busiest Innkeeper

3 6 9 USERS

Figure 2: Results of an experiment with identical communicating users, comparing a full client-
server MUD with the Happy Fun MUD system.

most users remain in a single room for long periods of time, speaking to others in that room. At
the same time, the simulated world remains important setting for the communication; users would
not want to give that up for a pure chat system. It is because we have noticed this frequent type of
behavior — which does not involve constant modification of the state of the simulated world, only
messaging other users with what is said — that we were able to optimize a MUD so effectively by
developing this type of peer-to-peer system.

This system requires users to use peers with a larger “footprint” than the typical MUD client, but
the memory and processor overhead of such a peer is not prohibitive given the normal computing
resources that a MUD user has. More problematic is that the system relies on arbitrary users
having adequate bandwidth to serve as innkeepers. If some users connect by dialup and have very
little bandwidth available (as happens on MUDs and MOOs now) the innkeeper system as it is now
implemented could experience local bottlenecks. This problem is a manifestation of what has been
cited [1] as a fallacy of peer-to-peer systems: treating all peers as if they had identical capabilities
and distributing service functionality among all peers when a subset is better able to take on certain
tasks. To prevent such a situation, some mechanism might allow higher-bandwidth peers to take
over as innkeeper, coordinating this through the gateway to make sure that only one such peer was
taking over the responsibility at a given time.

9

4 Related Work

We found very few other projects that dealt with peer-to-peer MUD or MOO implementations.
One that was typical was a student project proposed last semester in a class at the University of
Illinois Urbana-Champaign [2]. This group employed a different scheme that involved distributing
the model of the world among different users, as was suggested for cluster-based server projects in
this class. They planned to use XML for the world representation and SOAP for communication.
We know of no other attempts to distribute a MUD or MOO environment along the lines of Happy
Fun MUD, with each peer keeping a complete map of the environment and sending communications
directly to others.

The “gateway” system relates to techniques used in peer-to-peer file sharing to allow users to log on
through a server, after which point they can access other peers directly. The “innkeeper” is in some
ways similar to the “channel operator” of IRC (Internet Relay Chat). However, we designed the
mechanism of innkeeper in such a way that it is not particularly desirable to become one. People
battle for “channel ops” on IRC by writing bots that spoof other user’s names and log them off
the channel so they can gain control of it; we have tried, by design, to prevent the innkeeper from
having any special powers that would cause people to struggle for that office. We sought to avoid
this problem by not making the innkeeper a “power user” of any sort. It is possible that a full-scale
implementation would require a more powerful innkeeper, so that this problem would have to be
dealt with at a later stage of development.

Our approach is also related to the cluster-based server approach where each server manages a
small portion of the game’s players. In these methods, bandwidth is reduced by having each server
only interact with the players in its cluster and having the servers interact amongst themselves.
Similarly, our approach reduces bandwidth by having players only communicate with other players
in their cluster/room. The innkeepers’ peers behave in some ways like the servers, managing events
between players in different rooms. However, they do not truly function as servers for rooms,
because communications that take place in the rooms do not have to pass through them: All peers
send public speech to everyone else in the room directly, and they send whispered, private speech
directly to the intended recipient. A complete implementation of a peer-to-peer system also would
not suffer the same sort of failure modes that clustered servers would. A server failure, even with
clustered servers, would either kick off a group of users or eliminate a whole portion of the MUD
and render it inaccessible. In the peer-to-peer system, no such problems would exist once the issue
of innkeeper failure was handled.

5 Future Work

Converting Happy Fun MUD into a MUD system suitable for ordinary, daily use could be done in
three phases.

10

5.1 Tolerating Peer Failures

The problem of innkeeper failure should be handled first, along with the problem of “zombie” users.
Crashes of any sort of peer should be tolerated completely, with at most a delay as innkeeper
responsibilities are taken up by a new peer. As soon as a peer discovers a failed innkeeper (which
will happen whenever a peer tries to say something to the whole room) it should be able to acquire
a room lock from the gateway and designate itself as the new innkeeper. Similarly, innkeepers
should regularly poll peers in the room and update the room list when a peer cannot be reached.
Of course, there may be situations in which an innkeeper cannot reach a peer but that peer can still
reach others in the room, so the situation may be more complex than these suggested modifications
assume. So, such modifications may uncover some new difficulties, but we do not anticipate that
major new issues would come up in implementing these changes and dealing with these sorts of
failures effectively.

5.2 Mutual Exclusion

Peers should be able to access the gateway to acquire other sorts of locks and to atomically manip-
ulate the simulated world. This would allows objects can can be taken and dropped, a malleable
environment that could be changed or augmented by users, and other sorts of interaction that are
already seen on client-server MUDs. Making the gateway the lock server provides a fairly simple
way achieve this exclusion, at the cost of making the gateway its own sort of bottleneck in the
entire system. However, it would be doing much less than the server in a typical MUD or MOO
even if it did provide locks, so it should be a less problematic bottleneck for activity.

5.3 Gateway Replication

After the above changes are made, the system will once again be fairly reliant on a single process,
the gateway, and prone to failure if the gateway crashes or becomes unreachable. However, the
gateway itself can be replicated without too much difficulty. That should be the last step in
making Happy Fun MUD fully functional and as distributed a system as possible. With replicated
gateways, any of the gateways could be used to connect to the MUD. After connecting, any gateway
could be consulted for a lock. The gateways would have to be mutually aware and would have to
handle the problem of mutual exclusion among peers as it is pushed onto them; any of the schemes
for distributed mutual exclusion could be used to accomplish this. The gateways would have to
collectively tolerate the failure of one or more gateway processes, also. Once this was accomplished
with a better gateway implementation, the system would be robust to all but one gateway crashing
and a given peer could endure any number of other peers failing. The complete richness of a MUD
environment could be provided in this sort of system, which would easily scale to large, distributed
groups of communicating users. We hope that new, compelling sorts of social environments could
be enabled by such a distributed MUD.

11

6 References

[1] Vahdat, Amin, Jeffrey Chase, Rebecca Braynard, Dejan Kostic and Adolfo Rodriguez. “Self-
Organizing Subsets: From Each According to His Abilities, To Each According to His Needs.” 1st
International Workshop on Peer-to-Peer Systems (IPTPS ’02), 7-8 March 2002, MIT, Cambridge,
Mass., USA. <http://www.cs.rice.edu/Conferences/IPTPS02/>

[2] Hurlburt, Nick, Christopher Neihengen, Charlie Pikscher and Andrew Rosenfeld. “Peer to Peer
MOO.” Project proposal abstract. <http://wiki.cs.uiuc.edu/cs497rej/Peer+to+Peer+MOO>

12

Appendix A: Communication through Messages

6.1 On Joining the MUD

PEER to GATEWAY: Request for map
GATEWAY to PEER: Reply with map
PEER to GATEWAY: Request for innkeeper list
GATEWAY to PEER: Reply with innkeeper list

6.2 On Entering an Empty Room

Peer designates itself as innkeeper of the new room
PEER to ALL innkeepers & GATEWAY: Send current innkeeper list

6.3 On Leaving an Otherwise Empty Room

Peer removes itself as innkeeper of the old room
PEER to ALL INNKEEPERS & GATEWAY: Send current innkeeper list

6.4 On Entering an Inhabited Room

PEER to NEW INNKEEPER: Send enter message
New innkeeper adds peer to room list
NEW INNKEEPER to ALL PEERS IN ROOM: Send room list

6.5 On Leaving an Otherwise Inhabited Room

PEER to OLD INNKEEPER: Send leave message
OLD INNKEEPER to PEER: Send innkeeper list
Old innkeeper removes peer from room list
OLD INNKEEPER to ALL IN ROOM: Send room list

6.6 On Performing a “Say” (Speaking Publicly to Everyone within the Room)

PEER to ALL IN ROOM: Send text of utterance, marked public

13

6.7 On Performing a “Whisper” (Private Speech to a Single Other Player)

PEER to OTHER PEER: Send text of utterance, marked private

6.8 On Performing a “Holler” (Speech to Everyone in the Entire MUD)

PEER to INNKEEPER: Send text of utterance, marked holler
INNKEEPER to ALL INNKEEPERS: Send text of utterance, marked holler
ALL INNKEEPERS to ALL IN ROOM: Send text of utterance, marked holler

Appendix B: Message Formats

• INK:REQ - Request the innkeeper list

• INK:SET:lst - Send a message to set innkeeper list to lst

• BRD:brd - Message containing board configuration

• NEW - Sent to Gateway to inform of wish to enter MUD

• ENT:username - Notification of entering a room

• LEA:username - Notification of leaving a room

• PLA:lst - Send a message saying that the player list has been changed to lst

• SAY:msg - Say msg to all players in the room

• WHP:userX:msg - Whisper msg only to player userX

• HOL:msg - Holler a message to entire MUD

14

