
Embedding Biomedical Ontologies by Jointly Encoding
Network Structure and Textual Node Descriptors
Sotiris Kotitsas1, Dimitris Pappas1,2, Ion Androutsopoulos1,

Ryan McDonald1,3 and Marianna Apidianaki4

1Department of Informatics, Athens University of Economics and Business, Greece
2Institute for Language and Speech Processing, Research Center ‘Athena’, Greece

3Google Research
4CNRS, LLF, Univ. Paris Diderot, France

{p3150077, pappasd, ion}@aueb.gr
ryanmcd@google.com, marianna@limsi.fr

Abstract

Network Embedding (NE) methods, which
map network nodes to low-dimensional fea-
ture vectors, have wide applications in net-
work analysis and bioinformatics. Many ex-
isting NE methods rely only on network struc-
ture, overlooking other information associated
with the nodes, e.g., text describing the nodes.
Recent attempts to combine the two sources of
information only consider local network struc-
ture. We extend NODE2VEC, a well-known NE
method that considers broader network struc-
ture, to also consider textual node descriptors
using recurrent neural encoders. Our method
is evaluated on link prediction in two net-
works derived from UMLS. Experimental re-
sults demonstrate the effectiveness of the pro-
posed approach compared to previous work.

1 Introduction

Network Embedding (NE) methods map each
node of a network to an embedding, meaning a
low-dimensional feature vector. They are highly
effective in network analysis tasks involving pre-
dictions over nodes and edges, for example link
prediction (Lu and Zhou, 2010), and node classi-
fication (Sen et al., 2008).

Early NE methods, such as DEEPWALK (Perozzi
et al., 2014), LINE (Tang et al., 2015), NODE2VEC

(Grover and Leskovec, 2016), GCNs (Kipf and
Welling, 2016), leverage information from the
network structure to produce embeddings that can
reconstruct node neighborhoods. The main advan-
tage of these structure-oriented methods is that
they encode the network context of the nodes,
which can be very informative. The downside is
that they typically treat each node as an atomic
unit, directly mapped to an embedding in a look-
up table (Fig. 1a). There is no attempt to model
information other than the network structure, such

lung cancer

cancerlung carcinoma leukemia

small cell carcinoma

lung cancer

cancer

acute lymphocytic leukemia

lung carcinoma
leukemia

small
cell

carcinoma

a) b)

acute lymphocytic leukemia

Figure 1: Example network with nodes associated with
textual descriptors. a) A model where each node is rep-
resented by a vector (node embedding) from a look-up
table. b) A model where each node embedding is gen-
erated compositionally from the word embeddings of
its descriptor via an RNN. The latter model can learn
node embeddings from both the network structure and
the word sequences of the textual descriptors.

as textual descriptors (labels) or other meta-data
associated with the nodes.

More recent NE methods, e.g., CANE (Tu et al.,
2017), WANE (Shen et al., 2018), produce embed-
dings by combining the network structure and the
text associated with the nodes. These content-
oriented methods embed networks whose nodes
are rich textual objects (often whole documents).
They aim to capture the compositionality and se-
mantic similarities in the text, encoding them with
deep learning methods. This approach is illus-
trated in Fig. 1b. However, previous methods of
this kind considered impoverished network con-
texts when embedding nodes, usually single-edge
hops, as opposed to the non-local structure con-
sidered by most structure-oriented methods.

When embedding biomedical ontologies, it is
important to exploit both wider network contexts
and textual node descriptors. The benefit of the
latter is evident, for example, in ‘acute leukemia’
IS-A ‘leukemia’. To be able to predict (or recon-
struct) this IS-A relation from the embeddings of
‘acute leukemia’ and ‘leukemia’ (and the word
embeddings of their textual descriptors in Fig. 1b),

a NE method only needs to model the role of
‘acute’ as a modifier that can be included in the de-
scriptor of a node (e.g., a disease node) to specify
a sub-type. This property can be learned (and en-
coded in the word embedding of ‘acute’) if several
similar IS-A edges, with ‘acute’ being the only
extra word in the descriptor of the sub-type, ex-
ist in the network. This strategy would not how-
ever be successful in ‘p53’ (a protein) IS-A ‘tumor
suppressor’, where no word in the descriptors fre-
quently denotes sub-typing. Instead, by consider-
ing the broader network context of the nodes (i.e.
longer paths that connect them), a NE method can
detect that the two nodes have common neighbors
and, hence, adjust the two node embeddings (and
the word embeddings of their descriptors) to be
close in the representation space, making it more
likely to predict an IS-A relation between them.

We propose a new NE method that leverages the
strengths of both structure and content-oriented
approaches. To exploit wide network contexts, we
follow NODE2VEC (Grover and Leskovec, 2016)
and generate random walks to construct the net-
work neighborhood of each node. The SKIP-
GRAM model (Mikolov et al., 2013) is then used
to learn node embeddings that successfully pre-
dict the nodes in each walk, from the node at the
beginning of the walk. To enrich the node em-
beddings with information from their textual de-
scriptors, we replace the NODE2VEC look-up ta-
ble with various architectures that operate on the
word embeddings of the descriptors. These in-
clude simply averaging the word embeddings of
a descriptor, and applying recurrent deep learning
encoders. The proposed method can be seen as an
extension of NODE2VEC that incorporates textual
node descriptors. We evaluate several variants of
the proposed method on link prediction, a stan-
dard evaluation task for NE methods. We use two
biomedical networks extracted from UMLS (Bo-
denreider, 2004), with PART-OF and IS-A rela-
tions, respectively. Our method outperforms sev-
eral existing structure and content-oriented meth-
ods on both datasets. We make our datasets and
source code available.1

2 Related work

Network Embedding (NE) methods, a type of rep-
resentation learning, are highly effective in net-

1https://github.com/SotirisKot/
Content-Aware-N2V

work analysis tasks involving predictions over
nodes and edges. Link prediction has been ex-
tensively studied in social networks (Wang et al.,
2015), and is particularly relevant to bioinfor-
matics where it can help, for example, to dis-
cover interactions between proteins, diseases, and
genes (Lei and Ruan, 2013; Shojaie, 2013; Grover
and Leskovec, 2016). Node classification can
also help analyze large networks by automati-
cally assigning roles or labels to nodes (Ahmed
et al., 2018; Sen et al., 2008). In bioinformat-
ics, this approach has been used to identify pro-
teins whose mutations are linked with particular
diseases (Agrawal et al., 2018).

A typical structure-oriented NE method is
DEEPWALK (Perozzi et al., 2014), which learns
node embeddings by applying WORD2VEC’s
SKIPGRAM model (Mikolov et al., 2013) to node
sequences generated via random walks on the
network. NODE2VEC (Grover and Leskovec,
2016) explores different strategies to perform ran-
dom walks, introducing hyper-parameters to guide
them and generate more flexible neighborhoods.
LINE (Tang et al., 2015) learns node embeddings
by exploiting first- and second-order proximity in-
formation in the network. Wang et al. (2016)
learn node embeddings that preserve the proxim-
ity between 2-hop neighbors using a deep autoen-
coder. Yu et al. (2018) encode node sequences
generated via random walks, by mapping the
walks to low dimensional embeddings, through an
LSTM autoencoder. To avoid overfitting, they use
a generative adversarial training process as regu-
larization. Graph Convolutional Networks (GCNs)
are a graph encoding framework that also falls
within this paradigm (Kipf and Welling, 2016;
Schlichtkrull et al., 2018). Unlike other meth-
ods that use random walks or static neighbour-
hoods, GCNs use iterative neighbourhood averag-
ing strategies to account for non-local graph struc-
ture. All the aforementioned methods only encode
the structural information into node embeddings,
ignoring textual or other information that can be
associated with the nodes of the network.

Previous work on biomedical ontologies (e.g.,
Gene Ontology, GO) suggested that their terms,
which are represented through textual descriptors,
have compositional structure. By modeling it, we
can create richer representations of the data en-
coded in the ontologies (Mungall, 2004; Ogren
et al., 2003, 2004). Ogren et al. (2003) strengthen

https://github.com/SotirisKot/Content-Aware-N2V
https://github.com/SotirisKot/Content-Aware-N2V

the argument of compositionality by observing
that many GO terms contain other GO terms. Also,
they argue that substrings that are not GO terms
appear frequently and often indicate semantic re-
lationships. Ogren et al. (2004) use finite state
automata to represent GO terms and demonstrate
how small conceptual changes can create biologi-
cally meaningful candidate terms.

In other work on NE methods, CENE (Sun et al.,
2016) treats textual descriptors as a special kind of
node, and uses bidirectional recurrent neural net-
works (RNNs) to encode them. CANE (Tu et al.,
2017) learns two embeddings per node, a text-
based one and an embedding based on network
structure. The text-based one changes when inter-
acting with different neighbors, using a mutual at-
tention mechanism. WANE (Shen et al., 2018) also
uses two types of node embeddings, text-based
and structure-based. For the text-based embed-
dings, it matches important words across the tex-
tual descriptors of different nodes, and aggregates
the resulting alignment features. In spite of per-
formance improvements over structure-oriented
approaches, these content-aware methods do not
thoroughly explore the network structure, since
they consider only direct neighbors.

By contrast, we utilize NODE2VEC to obtain
wider network neighborhoods via random walks,
a typical approach of structure-oriented methods,
but we also use RNNs to encode the textual de-
scriptors, as in some content-oriented approaches.
Unlike CENE, however, we do not treat texts as
separate nodes; unlike CANE, we do not learn sep-
arate embeddings from texts and network struc-
ture; and unlike WANE, we do not align the de-
scriptors of different nodes. We generate the em-
bedding of each node from the word embeddings
of its descriptor via the RNN (Fig. 1), but the pa-
rameters of the RNN, the word embeddings, hence
also the node embeddings are updated during
training to predict NODE2VEC’s neighborhoods.

Although we use NODE2VEC to incorporate
network context in the node embeddings, other
neighborhood embedding methods, such as GCNs,
could easily be used too. Similarly, text encoders
other than RNNs could be applied. For exam-
ple, Mishra et al. (2019) try to detect abusive lan-
guage in tweets with a semi-supervised learning
approach based on GCNs. They exploit the net-
work structure and also the labels associated with
the tweets, taking into account the linguistic be-

havior of the authors.

3 Proposed Node Embedding Approach

Consider a network (graph)G = 〈V,E, S〉, where
V is the set of nodes (vertices); E ⊆ V × V is
the set of edges (links) between nodes; and S is a
function that maps each node v ∈ V to its textual
descriptor S(v) = 〈w1, w2, . . . , wn〉, where n is
the word length of the descriptor, and each word
wi comes from a vocabularyW . We consider only
undirected, unweighted networks, where all edges
represent instances of the same (single) relation-
ship (e.g., IS-A or PART-OF). Our approach, how-
ever, can be extended to directed weighted net-
works with multiple relationship types. We learn
an embedding f(v) ∈ Rd for each node v ∈ V .
As a side effect, we also learn a word embedding
e(w) for each vocabulary word w ∈W .

To incorporate structural information into the
node embeddings, we maximize the predicted
probabilities p(u|v) of observing the actual neigh-
bors u ∈ N(v) of each ‘focus’ node v ∈ V ,
where N(v) is the neighborhood of v, and p(u|v)
is predicted from the node embeddings of u and
v. The neighbors N(v) of v are not necessarily
directly connected to v. In real-world networks,
especially biomedical, many nodes have few di-
rect neighbors. We use NODE2VEC (Grover and
Leskovec, 2016) to obtain a larger neighborhood
for each node v, by generating random walks from
v. For every focus node v ∈ V , we compute r ran-
dom walks (paths) Pv,i = 〈vi,1 = v, vi,2, ..., vi,k〉
(i = 1, . . . , r) of fixed length k through the net-
work (vi,j ∈ V).2 The predicted probability
p(vi,j = u) of observing node u at step j of
a walk Pv,i that starts at focus node v is taken
to depend only on the embeddings of u, v, i.e.,
p(vi,j = u) = p(u|v), and can be estimated with
a softmax as in the SKIPGRAM model (Mikolov
et al., 2013):

p(u|v) = exp(f ′(u) · f(v))∑
u′∈V exp(f ′(u′) · f(v))

(1)

where it is assumed that each node v has two dif-
ferent node embeddings, f(v), f ′(v), used when

2Our networks are unweighted, hence we use uniform
edge weighting to traverse them. NODE2VEC has two hyper-
parameters, p, q, to control the locality of the walk. We set
p = q = 1 (default values). For efficiency, NODE2VEC actu-
ally performs r random walks of length l ≥ k; then it uses r
sub-walks of length k that start at each focus node.

v is the focus node or the predicted neigh-
bor, respectively, and · denotes the dot prod-
uct. NODE2VEC minimizes the following objec-
tive function:

L = −
∑
v∈V

r∑
i=1

k∑
j=2

log p(vi,j |vi,1 = v) (2)

in effect maximizing the likelihood of observing
the actual neighbors vi,j of each focus node v
that are encountered during the r walks Pv,i =
〈vi,1 = v, vi,2, ..., vi,k〉 (i = 1, . . . , r) from v. Cal-
culating p(u|v) using a softmax (Eq. 1) is com-
putationally inefficient. We apply negative sam-
pling instead, as in WORD2VEC (Mikolov et al.,
2013). Thus, NODE2VEC is analogous to SKIP-
GRAM WORD2VEC, but using random walks from
each focus node, instead of using a context win-
dow around each focus word in a corpus.

As already mentioned, the original NODE2VEC

does not consider the textual descriptors of the
nodes. It treats each node embedding f(v) as a
vector representing an atomic unit, the node v;
a look-up table directly maps each node v to its
embedding f(v). This does not take advantage
of the flexibility and richness of natural language
(e.g., synonyms, paraphrases), nor of its composi-
tional nature. To address this limitation, we sub-
stitute the look-up table where NODE2VEC stores
the embedding f(v) of each node v with a neu-
ral sequence encoder that produces f(v) from the
word embeddings of the descriptor S(v) of v.

More formally, let every wordw ∈W have two
embeddings e(w) and e′(w), used when w occurs
in the descriptor of a focus node, and when w oc-
curs in the descriptor of a neighbor of a focus node
(in a random walk), respectively. For every node
v ∈ V with descriptor S(v) = (w1, . . . , wn), we
create the sequences T (v) = 〈e(w1), . . . , e(wn)〉
and T ′(v) = 〈e′(w1), . . . , e

′(wn)〉. We then set
f(v) = ENC(T (v)) and f ′(v) = ENC(T ′(v)),
where ENC is the sequence encoder. We outline
below three specific possibilities for ENC, though
it can be any neural text encoder. Note that the
embeddings f(v) and f ′(v) of each node v are
constructed from the word embeddings T (v) and
T ′(v), respectively, of its descriptor S(v) by the
encoder ENC. The word embeddings of the de-
scriptor and the parameters of ENC, however, are
also optimized during back-propagation, so that
the resulting node embeddings will predict (Eq. 1)
the actual neighbors of each focus node (Fig. 2).

right twelfth rib body of right twelfth rib external surface of right twelfth rib

focus nodepredicted neighbor

Encoder Encoder Encoder

f'(v1) f(v2) f'(v3)

optimize optimize

predicted neighbor

Figure 2: Illustration of the proposed NE approach.

For simplicity, we only mention f(v) and T (v)
below, but the same applies to f ′(v) and T ′(v).
AVG-N2V: For every node v ∈ V , this model
constructs the node’s embedding f(v) by sim-
ply averaging the word embeddings T (v) =
〈e(w1), . . . , e(wn)〉 of S(v) = (w1, w2, . . . , wn).

f(v) =
1

n

n∑
i=1

e(wi) (3)

GRU-N2V: Although averaging word embeddings
is effective in text categorization (Joulin et al.,
2016), it ignores word order. To account for or-
der, we apply RNNs with GRU cells (Cho et al.,
2014) instead. For each node v ∈ V with de-
scriptor S(v) = 〈w1, . . . , wn〉, this method com-
putes n hidden state vectors H = 〈h1, . . . , hn〉 =
GRU(e(w1), . . . , e(wn)). The last hidden state
vector hn is the node embedding f(v).
BIGRU-MAX-RES-N2V: This method uses a
bidirectional RNN (Schuster and Paliwal, 1997).
For each node v with descriptor S(v) =
〈w1, w2, . . . , wn〉, a bidirectional GRU (BIGRU)
computes two sets of n hidden state vectors, one
for each direction. These two sets are then added
to form the output H of the BIGRU:

Hf = GRUf (e(w1), . . . , e(wn)) (4)

Hb = GRUb(e(w1), . . . , e(wn)) (5)

H = Hf +Hb (6)

where f , b denote the forward and backward di-
rections, and + indicates component-wise addi-
tion. We add residual connections (He et al., 2015)
from each word embedding e(wt) to the corre-
sponding hidden state ht of H . Instead of using
the final forward and backward states of H , we
apply max-pooling (Collobert and Weston, 2008;
Conneau et al., 2017) over the state vectors ht of
H . The output of the max pooling is the node em-
bedding f(v). Figure 3 illustrates this method.

Additional experiments were conducted with
several variants of the last encoder. A unidirec-
tional GRU instead of a BIGRU, and a BIGRU with

Node: v

lumen of arterial trunk

e1 e2 e3 e4

h1

h1

h2

h2

h3

h3

h4

h4

+ + + +

X
X

X
X

Node
Embedding

f(v): X X X X

Max-Pooling

Figure 3: Obtaining the embedding of a node v by ap-
plying a BIGRU encoder with max-pooling and residu-
als to the embeddings of v’s textual descriptor.

self-attention (Bahdanau et al., 2015) instead of
max-pooling were also tried. To save space, we
described only the best performing variant.

4 Experiments

We investigate the effectiveness of our proposed
approach by conducting link prediction experi-
ments on two biomedical datasets derived from
UMLS. Furthermore, we devise a new approach
of generating negative edges for the link predic-
tion evaluation – beyond just random negatives –
that makes the problem more difficult and aligns
more with real-world use-cases. We also conduct
a qualitative analysis, showing that the proposed
framework does indeed leverage both the textual
descriptors and the network structure.

4.1 Datasets

We created our datasets from the UMLS ontol-
ogy, which contains approx. 3.8 million biomed-
ical concepts and 54 semantic relationships. The
relationships become edges in the networks, and
the concepts become nodes. Each concept (node)
is associated with a textual descriptor. We extract
two types of semantic relationships, creating two
networks. The first, and smaller one, consists of
PART-OF relationships where each node represents
a part of the human body. The second network

Statistics IS-A PART-OF
Nodes 294,693 16,894
Edges 356,541 19,436
Training true positive edges 294,692 16,893
Training true negative edges 294,692 16,893
Test true positive edges 61,849 2,543
Test true negative edges 61,849 2,543
Avg. descriptor length 5 words 6 words
Max. descriptor length 31 words 14 words

Table 1: Statistics of the two datasets (IS-A, PART-OF).
The true positive and true negative edges are used in
the link prediction experiments.

contains IS-A relationships, and the concepts rep-
resented by the nodes vary across the spectrum
of biomedical entities (diseases, proteins, genes,
etc.). To our knowledge, the IS-A network is one
of the largest datasets employed for link predic-
tion and learning network embeddings. Statistics
for the two datasets are shown in Table 1.

4.2 Baseline Node Embedding Methods

We compare our proposed methods to baselines
of two types: structure-oriented methods, which
solely focus on network structure, and content-
oriented methods that try to combine the net-
work structure with the textual descriptors of the
nodes (albeit using impoverished network neigh-
borhoods so far). For the first type of methods,
we employ NODE2VEC (Grover and Leskovec,
2016), which uses a biased random walk algo-
rithm based on DEEPWALK (Perozzi et al., 2014)
to explore the structure of the network more ef-
ficiently. Our work can be seen as an extension
of NODE2VEC that incorporates textual node de-
scriptors, as already discussed, hence it is natural
to compare to NODE2VEC. As a content-oriented
baseline we use CANE (Tu et al., 2017), which
learns separate text-based and network-based em-
beddings, and uses a mutual attention mechanism
to dynamically change the text-based embeddings
for different neighbors (Section 2). CANE only
considers the direct neighbors of each node, un-
like NODE2VEC, which considers larger neighbor-
hoods obtained via random walks.

4.3 Link Prediction

In link prediction, we are given a network with
a certain fraction of edges removed. We need to
infer these missing edges by observing the incom-
plete network, facilitating the discovery of links
(e.g., unobserved protein-protein interactions).

Concretely, given a network we first randomly
remove some percentage of edges, ensuring that

the network remains connected so that we can per-
form random walks over it. Each removed edge e
connecting nodes v1, v2 is treated as a true pos-
itive, in the sense that a link prediction method
should infer that an edge should be added between
v1, v2. We also use an equal number of true nega-
tives, which are pairs of nodes v′1, v

′
2 with no edge

between v′1, v
′
2 in the original network. When

evaluating NE methods, a link predictor is given
true positive and true negative pairs of nodes, and
is required to discriminate between the two classes
by examining only the node embeddings of each
pair. Node embeddings are obtained by applying
a NE method to the pruned network, i.e., after re-
moving the true positives. A NE method is con-
sidered better than another one, if it leads to better
performance of the same link predictor.

We experiment with two approaches to obtain
true negatives. In Random Negative Sampling, we
randomly select pairs of nodes that were not di-
rectly connected (by a single edge) in the original
network. In Close Proximity Negative Sampling,
we iterate over the nodes of the original network
considering each one as a focus. For each focus
node v, we want to find another node u in close
proximity that is not an ancestor or descendent
(e.g., parent, grandparent, child, grandchild) of v
in the IS-A or PART-OF hierarchy, depending on
the dataset. We want u to be close to v, to make
it more difficult for the link predictor to infer that
u and v should not be linked. We do not, how-
ever, want u to be an ancestor or descendent of
v, because the IS-A and PART-OF relationships of
our datasets are transitive. For example, if u is
a grandparent of v, it could be argued that infer-
ring that u and v should be linked, is not an er-
ror. To satisfy these constraints, we first find the
ancestors of v that are between 2 to 5 hops away
from v in the original network.3 We randomly se-
lect one of these ancestors, and then we randomly
select as u one of the ancestor’s children in the
original network, ensuring that u was not an an-
cestor or descendent of v in the original network.
In both approaches, we randomly select as many
true negatives as the true positives, discarding the
remaining true negatives.

We experimented with two link predictors:

Cosine similarity link predictor (CS): Given a
pair of nodes v1, v2 (true positive or true negative

3The edges of the resulting datasets are not directed.
Hence, looking for descendents would be equivalent.

edge), CS computes the cosine similarity (ignor-
ing negative scores) between the two node embed-
dings as s(v1, v2) = max(0, cos(f(v1), f(v2))),
and predicts an edge between the two nodes if
s(v1, v2) ≥ t, where t is a threshold. We evaluate
the predictor on the true positives and true nega-
tives (shown as ‘test’ true positives and ‘test’ true
negatives in Table 1) by computing AUC (area un-
der ROC curve), in effect considering the precision
and recall of the predictor for varying t.4

Logistic regression link predictor (LR): Given a
pair of nodes v1, v2, LR computes the Hadamard
(element-wise) product of the two node embed-
dings f(v1) � f(v2) and feeds it to a logistic re-
gression classifier to obtain a probability estimate
p that the two nodes should be linked. The predic-
tor predicts an edge between v1, v2 if p ≥ t. We
compute AUC on a test set by varying t. The test
set of this predictor is the same set of true pos-
itives and true negatives (with Random or Close
Proximity Negative Sampling) that we use when
evaluating the CS predictor. The training set of
the logistic regression classifier contains as true
positives all the other edges of the network that
remain after the true positives of the test set have
been removed, and an equal number of true nega-
tives (with the same negative sampling method as
in the test set) that are not used in the test set.

4.4 Implementation Details

For NODE2VEC and our NE methods, which can
be viewed as extensions of NODE2VEC, the di-
mensionality of the node embeddings is 30. The
dimensionality of the word embeddings (in our NE

methods) is also 30. In the random walks, we set
r = 5, l = 40, k = 10 for IS-A, and r = 10, l =
40, k = 10 for PART-OF; these hyper-parameters
were not particularly tuned, and their values were
selected mostly to speed up the experiments. We
train for one epoch with a batch size of 128, set-
ting the number of SKIPGRAM’s negative samples
to 2. We use the Adam (Kingma and Ba, 2015) op-
timizer in our NE methods. We implemented our
NE methods and the two link predictors using Py-
Torch (Paszke et al., 2017) and Scikit-Learn (Pe-
dregosa et al., 2011). For NODE2VEC and CANE,
we used the implementations provided.5

4We do not report precision, recall, F1 scores, because
these require selecting a particular threshold t values.

5See https://github.com/aditya-grover/
node2vec, https://github.com/thunlp/CANE.

https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://github.com/thunlp/CANE

Random Close
Negative Proximity

NE Method + Link Predictor Sampling Sampling

Node2Vec + CS 66.6 54.3
CANE + CS 94.1 69.6
Avg-N2V + CS 95.0 78.6
GRU-N2V + CS 98.7 79.2
BiGRU-Max-Res-N2V + CS 98.5 79.0

Node2Vec + LR
CANE + LR
Avg-N2V + LR
GRU-N2V + LR
BiGRU-Max-Res-N2V + LR

77.2
95.3
97.6
99.0
99.3

56.3
70.0
73.9
79.6
82.1

Table 2: AUC scores (%) for the IS-A dataset. Best
scores per link predictor (CS, LR) shown in bold.

For CANE, we set the dimensionality of the
node embeddings to 200, as in the work of Tu et al.
(2017). We also tried 30-dimensional node em-
beddings, as in NODE2VEC and our NE methods,
but performance deteriorated significantly.

4.5 Link Prediction Results
Link prediction results for the IS-A and PART-
OF networks are reported in Tables 2 and 3. All
content-oriented NE methods (CANE and our ex-
tensions of NODE2VEC) clearly outperform the
structure-oriented method (NODE2VEC) on both
datasets in both negative edge sampling settings,
showing that modeling the textual descriptors of
the nodes is critical. Furthermore, all methods
perform much worse with Close Proximity Nega-
tive Sampling, confirming that the latter produces
more difficult link prediction datasets.

All of our NE methods (content-aware exten-
sions of NODE2VEC) outperform NODE2VEC and
CANE in every case, especially with Close Prox-
imity Negative Sampling. We conclude that it is
important to model not just the textual descriptor
of a node or its direct neighbors, but as much non-
local network structure as possible.

For PART-OF relations (Table 3), BIGRU-MAX-
RES-N2V obtains the best results with both link
predictors (CS, LR) in both negative sampling set-
tings, but the differences from GRU-N2V are very
small in most cases. For IS-A (Table 2), BIGRU-
MAX-RES-N2V obtains the best results with the
LR predictor, and only slightly inferior results
than GRU-N2V with the CS predictor. The differ-
ences of these two NE methods from AVG-N2V are
larger, indicating that recurrent neural encoders of
textual descriptors are more effective than simply
averaging the word embeddings of the descriptors.

Random Close
Negative Proximity

NE Method + Link Predictor Sampling Sampling

Node2Vec + CS 76.8 61.8
CANE + CS 93.9 75.3
Avg-N2V + CS 95.9 81.8
GRU-N2V + CS 98.0 83.1
BiGRU-Max-Res-N2V + CS 98.5 83.3

Node2Vec + LR
CANE + LR
Avg-N2V + LR
GRU-N2V + LR
BiGRU-Max-Res-N2V + LR

85.2
94.4
97.6
99.0
99.5

66.5
76.3
79.4
85.6
88.6

Table 3: AUC scores (%) for the PART-OF dataset. Best
scores per link predictor (CS, LR) shown in bold.

Target Node: Left Eyeball (PART-OF)

Most Similar Embeddings Cos Hops

equator of left eyeball 99.3 1

episcleral layer of left eyeball 99.2 4

cavity of left eyeball 99.1 1

wall of left eyeball 99.0 1

vascular layer of left eyeball 98.9 1

Target Node: Lung Carcinoma (IS-A)

Most Similar Embeddings Cos Hops

recurrent lung
carcinoma 97.6 1

papillary carcinoma 97.1 2

lung pleomorphic
carcinoma 97.0 3

ureter carcinoma 96.6 2

lymphoepithelioma-like lung
carcinoma 96.6 3

Table 4: Examples of nodes whose embeddings are
closest (cosine similarity, Cos) to the embedding of
a target node in the PART-OF (top) and IS-A (bottom)
datasets. We also show the distances (number of edges,
Hops) between the nodes in the networks.

Finally, we observe that the best results of the
LR predictor are better than those of the CS predic-
tor, in both datasets and with both negative edge
sampling approaches, with the differences being
larger with Close Proximity Sampling. This is as
one would expect, because the logistic regression
classifier can assign different weights to the di-
mensions of the node embeddings, depending on
their predictive power, whereas cosine similarity
assigns the same importance to all dimensions.

(a) Two nodes connected by a PART-OF edge.

(b) Two nodes connected by a PART-OF edge.

(c) Two nodes connected by an IS-A edge.

Figure 4: Visualization of the importance that BIGRU-
MAX-RES-N2V assigns to the words of the descriptors
of the nodes of three edges. Edges (a) and (b) are from
the PART-OF dataset. Edge (c) is from the IS-A dataset.

4.6 Qualitative Analysis

To better understand the benefits of leveraging
both network structure and textual descriptors, we
present examples from the two datasets.

Most similar embeddings: Table 4 presents the
five nearest nodes for two target nodes (‘Left Eye-
ball’ and ‘Lung Carcinoma’), based on the cosine
similarity of the corresponding node embeddings
in the PART-OF and IS-A networks, respectively.
We observe that all nodes in the PART-OF example
are very similar content-wise to our target node.
Furthermore, the model captures the semantic re-
lationship between concepts, since most of the re-
turned nodes are actually parts of ‘Left Eyeball’.
The same pattern is observed in the IS-A example,
with the exception of ‘ureter carcinoma’, which is
not directly related with ‘lung carcinoma’, but is
still a form of cancer. Finally, it is clear that the
model extracts meaningful information from both
the textual content of each node and the network
structure, since the returned nodes are closely lo-
cated in the network (Hops 1–4).

Heatmap visualization: BIGRU-MAX-RES-N2V

can be extended to highlight the words in each
textual descriptor that mostly influence the cor-
responding node embedding. Recall that this NE

method applies a max-pooling operator (Fig. 3)
over the state vectors h1, . . . , hn of the words
w1, . . . , wn of the descriptor, keeping the maxi-
mum value per dimension across the state vectors.
We count how many dimension-values the max-
pooling operator keeps from each state vector hi,
and we treat that count (normalized to [0, 1]) as
the importance score of the corresponding word
wi.6 We then visualize the importance scores as

6We actually obtain two importance scores for each word

Edges/Descriptors BN2V CANE N2V Hops

(a) bariatric surgery
(b) bypass
gastrojejunostomy

82.7 38.0 56.2 11

(a) anatomical line
(b) anterior
malleolar fold

82.3 29.0 50.0 22

(a) zone of biceps
brachii
(b) short head of
biceps brachii

93.0 70.0 61.6 13

Table 5: Examples of true positive edges, showing how
structure and textual descriptors affect node embed-
dings. The first two edges are IS-A, the third one is
PART-OF. The NE methods used are BIGRU-MAX-RES-
N2V (BN2V), CANE and NODE2VEC (N2V). We report
cosine similarities between node embeddings and the
distances between the nodes (number of edges, Hops)
in the networks after removing true positive edges.

heatmaps of the descriptors. In the first two exam-
ple edges of Fig. 4, the highest importance scores
are assigned to words indicating body parts, which
is appropriate given that the edges indicate PART-
OF relations. In the third example edge, the high-
est importance score of the first descriptor is as-
signed to ‘carcinoma’, and the highest importance
scores of the second descriptor are shared by ‘ma-
lignant’ and ‘neoplasm’; again, this is appropriate,
since these words indicate an IS-A relation.

Case Study: In Table 5, we present examples that
illustrate learning from both the network struc-
ture and textual descriptors. All three edges are
true positives, i.e., they were initially present in
the network and they were removed to test link
prediction. In the first two edges, which come
from the IS-A network, the node descriptors share
no words. Nevertheless, BIGRU-MAX-RES-N2V

(BN2V) produces node embeddings with high co-
sine similarities, much higher than NODE2VEC

that uses only network structure, presumably be-
cause the word embeddings (and neural encoder)
of BN2V correctly capture lexical relations (e.g.,
near-synonyms). Although CANE also considers
the textual descriptors, its similarity scores are
much lower, presumably because it uses only local
neighborhoods (single-edge hops). The nodes in
the third example, which come from the PART-OF

network, have a larger word overlap. NODE2VEC

in the descriptor of a node, since each node v has two em-
beddings f(v), f ′(v), used when v is the focus or a neighbor
(Section 3), i.e., there are two results of the max-pooling op-
erator. We average the two importance scores of each word.

is unaware of this overlap and produces the lowest
score. The two content-oriented methods (BN2V,
CANE) produce higher scores, but again BN2V

produces a much higher similarity, presumably
because it uses larger neighborhoods. In all three
edges, the two nodes are distant (>10 hops), yet
BN2V produces high similarity scores.

5 Conclusions and Future Work

We proposed a new method to learn content-aware
node embeddings, which extends NODE2VEC by
considering the textual descriptors of the nodes.
The proposed approach leverages the strengths
of both structure- and content-oriented node em-
bedding methods. It exploits non-local network
neighborhoods generated by random walks, as in
the original NODE2VEC, and allows integrating
various neural encoders of the textual descrip-
tors. We evaluated our models on two biomed-
ical networks extracted from UMLS, which con-
sist of PART-OF and IS-A edges. Experimental
results with two link predictors, cosine similar-
ity and logistic regression, demonstrated that our
approach is effective and outperforms previous
methods which rely on structure alone, or model
content along with local network context only.

In future work, we plan to experiment with net-
works extracted from other biomedical ontologies
and knowledge bases. We also plan to explore if
the word embeddings that our methods generate
can improve biomedical question answering sys-
tems (McDonald et al., 2018).

Acknowledgements

This work was partly supported by the Research
Center of the Athens University of Economics and
Business. The work was also supported by the
French National Research Agency under project
ANR-16-CE33-0013.

References
Monica Agrawal, Marinka Zitnik, and Jure Leskovec.

2018. Large-scale analysis of disease pathways
in the human interactome. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomput-
ing, 23:111–122.

Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Xi-
angnan Kong, Theodore L. Willke, Rong Zhou, and
Hoda Eldardiry. 2018. Learning role-based graph
embeddings. CoRR, abs/1802.02896.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

James Bergstra, Daniel L K Yamins, and David D.
Cox. 2013. Hyperopt: A python library for opti-
mizing the hyperparameters of machine learning al-
gorithms.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research, 32(Database-
Issue):267–270.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Ma-
chine Learning, Proceedings of the Twenty-Fifth In-
ternational Conference (ICML 2008), Helsinki, Fin-
land, June 5-9, 2008, pages 160–167.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pages 670–
680.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In KDD,
pages 855–864. ACM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient
text classification. CoRR, abs/1607.01759.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thomas N. Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. CoRR, abs/1609.02907.

Chengwei Lei and Jianhua Ruan. 2013. A novel
link prediction algorithm for reconstructing protein-
protein interaction networks by topological similar-
ity. Bioinformatics, 29(3):355–364.

Linyuan Lu and Tao Zhou. 2010. Link predic-
tion in complex networks: A survey. CoRR,
abs/1010.0725.

Ryan McDonald, Georgios-Ioannis Brokos, and Ion
Androutsopoulos. 2018. Deep relevance ranking us-
ing enhanced document-query interactions. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1849–1860,
Brussels, Belgium.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Pushkar Mishra, Marco Del Tredici, Helen Yan-
nakoudakis, and Ekaterina Shutova. 2019. Abusive
language detection with graph convolutional net-
works. CoRR, abs/1904.04073.

Christopher J Mungall. 2004. Obol: Integrating lan-
guage and meaning in bio-ontologies. Comparative
and Functional Genomics, 5:509 – 520.

Philip V. Ogren, K. Bretonnel Cohen, George K.
Acquaah-Mensah, Jens Eberlein, and Lawrence E
Hunter. 2003. The compositional structure of gene
ontology terms. Pacific Symposium on Biocom-
puting. Pacific Symposium on Biocomputing, pages
214–25.

Philip V. Ogren, K. Bretonnel Cohen, and Lawrence E
Hunter. 2004. Implications of compositionality in
the gene ontology for its curation and usage. Pacific
Symposium on Biocomputing. Pacific Symposium on
Biocomputing, pages 174–85.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jacob VanderPlas,
Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Edouard Duch-
esnay. 2011. Scikit-learn: Machine learning in
python. Journal of Machine Learning Research,
12:2825–2830.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: online learning of social repre-
sentations. In KDD, pages 701–710. ACM.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Con-
ference, pages 593–607. Springer.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673–2681.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Gallagher, and Tina Eliassi-Rad.
2008. Collective classification in network data. AI
Magazine, 29(3):93–106.

Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and
Lawrence Carin. 2018. Improved semantic-aware
network embedding with fine-grained word align-
ment. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 1829–1838.

Ali Shojaie. 2013. Link prediction in biological net-
works using multi-mode exponential random graph
models.

Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting
Liu. 2016. A general framework for content-
enhanced network representation learning. CoRR,
abs/1610.02906.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. LINE: large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, WWW 2015, Florence, Italy, May 18-22, 2015,
pages 1067–1077.

Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun.
2017. CANE: context-aware network embedding
for relation modeling. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
1722–1731.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Struc-
tural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pages
1225–1234.

Peng Wang, Baowen Xu, Yurong Wu, and Xiaoyu
Zhou. 2015. Link prediction in social networks: the
state-of-the-art. SCIENCE CHINA Information Sci-
ences, 58(1):1–38.

Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C. Ag-
garwal, Dongjin Song, Bo Zong, Haifeng Chen, and
Wei Wang. 2018. Learning deep network represen-
tations with adversarially regularized autoencoders.
In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23,
2018, pages 2663–2671.

Appendix

A CANE Hyper-parameters

CANE has 3 hyper-parameters, denoted α, β, γ,
which control to what extent it uses information
from network structure or textual descriptors. We
learned these hyper-parameters by employing the
HyperOpt (Bergstra et al., 2013) on the valida-
tion set.7 All three hyper-parameters had the same
search space: [0.2, 1, 0] with a step of 0.1. The op-
timization ran for 30 trials for both datasets. Ta-
ble 6 reports the resulting hyper-parameter values.

Parameters PART-OF IS-A

α 0.2 0.7

β 1.0 0.7

γ 1.0 0.7

Table 6: Hyper-parameter values used in CANE.

7 For more information on HyperOpt see: https://
github.com/hyperopt/hyperopt/wiki/FMin.
For a tutorial see: https://github.com/Vooban/
Hyperopt-Keras-CNN-CIFAR-100.

https://github.com/hyperopt/hyperopt/wiki/FMin
https://github.com/hyperopt/hyperopt/wiki/FMin
https://github.com/Vooban/Hyperopt-Keras-CNN-CIFAR-100
https://github.com/Vooban/Hyperopt-Keras-CNN-CIFAR-100

