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Generalized Linear Classifiers

v

Go onto ACL Anthology

Search for: “Naive Bayes”, “Maximum Entropy”, “Logistic
Regression”, “SVM", “Perceptron”
Do the same on Google Scholar

» “Maximum Entropy” & “NLP” 2660 hits, 141 before 2000
» “SVM" & “NLP"” 2210 hits, 16 before 2000
» “Perceptron” & "NLP”, 947 hits, 118 before 2000

All are examples of linear classifiers

v

v

v

v

All have become important tools in any NLP/CL researchers
tool-box in past 10 years
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Attitudes

1. Treat classifiers as black-box in language systems
» Fine for many problems
» Separates out the language research from the machine learning
research
» Practical — many off the shelf algorithms available
2. Fuse classifiers with language systems
» Can use our understanding of classifiers to tailor them to our
needs
» Optimizations (both computational and parameters)
» But we need to understand how they work ... at least to some
degree (*)
» Can also tell us something about how humans manage
language (see Walter's talk)

(*) What this course is about
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Lecture Qutline

v

Preliminaries: input/output, features, etc.
Linear Classifiers

» Perceptron
» Large-Margin Classifiers (SVMs, MIRA)
» Logistic Regression (Maximum Entropy)

v

v

Issues in parallelization

v

Structured Learning with Linear Classifiers

» Structured Perceptron
» Conditional Random Fields

Non-linear Classifiers with Kernels

v
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Preliminaries

Inputs and Outputs

» Input: x € X
» e.g., document or sentence with some words @ = wy ... w,, or
a series of previous actions
» Qutput: y €Y
> e.g., parse tree, document class, part-of-speech tags,
word-sense

» Input/Output pair: (z,y) € X x Y
> e.g., a document x and its label y
» Sometimes x is explicit in y, e.g., a parse tree y will contain
the sentence «
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Preliminaries

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!
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Preliminaries

Feature Representations

» We assume a mapping from input-output pairs (z,y) to a
high dimensional feature vector

> fle,y) : X xY —>R™
» For some cases, i.e., binary classification ) = {—1,+1}, we
can map only from the input to the feature space
» f(x): X - R™
» However, most problems in NLP require more than two
classes, so we focus on the multi-class case

» For any vector v € R™, let v; be the jt value
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Preliminaries

Examples

» x is a document and y is a label

1 if x contains the word “interest”
fi(x,y) = and y = “financial”
0 otherwise

fi(x,y) = % of words in = with punctuation and y = “scientific”

» x is a word and vy is a part-of-speech tag

1 if x = "bank” and y = Verb
0 otherwise

ey~ {
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Example 2

» x is a name, y is a label classifying the name

1  if @ contains “George”
fo(z,y) = and y = “Person”

0  otherwise
1
fi(z,y) = and y = “Person”

0  otherwise

1
f(z,y) = { 0

1
f3(z,y) = { 0

if & contains “Bridge”
and y = “Person”
otherwise

if @ contains “General”
and y = “Person”
otherwise

if 2 contains “Washington”

1

1
fs(ﬂlyy):{

1
fr(z,y) = { o

if & contains “George"
and y = “Object”
otherwise
if 2 contains “Washington”
and y = “Object”
otherwise

if & contains “Bridge”
and y = “Object”
otherwise

if @ contains “General”
and y = “Object”
otherwise

» x=General George Washington, y=Person — f(x,y) =[110100 0 0]
» x=George Washington Bridge, y=0bject — f(x,y) =[00001 1 1 0]
» x=George Washington George, y=0bject — f(x,y) =[0000 110 0]
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Preliminaries

Block Feature Vectors

» x=General George Washington, y=Person — f(x,y) =[110100 0 0]
» x=George Washington Bridge, y=0bject — f(x,y) =[00001 1 1 0]
» x=George Washington George, y=0bject — f(x,y) =[0000 110 0]

» Each equal size block of the feature vector corresponds to one
label

» Non-zero values allowed only in one block
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Linear Classifiers

Linear Classifiers

» Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

» Let w € R™ be a high dimensional weight vector

» If we assume that w is known, then we our classifier as

» Multiclass Classification: )} = {0,1,..., N}

y = argmax w-f(x,y)
y

= argmax ij x fi(x,y)

y i~

» Binary Classification just a special case of multiclass
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Linear Classifiers

Linear Classifiers - Bias Terms

» Often linear classifiers presented as

m
Yy = argmax ij x fi(x,y) + by
Jj=0

» Where b is a bias or offset term
» But this can be folded into f
x=General George Washington, y=Person — f(z,y)=[110110000 0]
x=General George Washington, y=0Object — f(x,y) =[000001101 1]
1 1y ="Person” fo(, y) :{ 1 y="Object

f4(a:,y):{ 0 otherwise 0 otherwise

» wy and wg are now the bias terms for the labels
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Linear Classifiers

Binary Linear Classifier

Divides all points:
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Linear Classifiers

Multiclass Linear Classifier

Defines regions of space:

> i.e, + are all points (z,y) where + = argmax,, w-f(z,y)
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Linear Classifiers

Separability

> A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable

» This can also be defined mathematically (and we will shortly)
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Linear Classifiers

Supervised Learning — how to find w

» Input: training examples 7 = {(wt,yt)}gl
» Input: feature representation f
» Output: w that maximizes/minimizes some important
function on the training set
» minimize error (Perceptron, SVMs, Boosting)
» maximize likelihood of data (Logistic Regression, Naive Bayes)
» Assumption: The training data is separable

» Not necessary, just makes life easier
» There is a lot of good work in machine learning to tackle the
non-separable case
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Linear Classifiers

Perceptron

» Choose a w that minimizes error

w= argminz 1 —1[y; = argmaxw - f(z, y)]
w5 Y

|1 pistrue
Lip] = { 0 otherwise

» This is a 0-1 loss function

» Aside: when minimizing error people tend to use hinge-loss or
other smoother loss functions
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Linear Classifiers

Perceptron Learning Algorithm

Training data: 7 = {(wt,yt)}gl
1. w®=0;i=0

2. forn:1.N

3 fort:1..T

4 Let y' = argmax,, w) . f(xz,, )

5. ify' # yr

6. wi) = wl)  f(z,, y;) — f(zr,9)

7 i=i+1

8. return w'
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Linear Classifiers

Perceptron: Separability and Margin

» Given an training instance (x;, y:), define:
> Ve=Y —{y}
> i.e., V; is the set of incorrect labels for x;

» A training set 7 is separable with margin v > 0 if there exists
a vector u with [ju|| = 1 such that:

u-f(ze,ye) —u-f(ze,y') > v

2
i Y
» Assumption: the training set is separable with margin ~

for all ' € Y, and ||u]| =
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Linear Classifiers

Perceptron: Main Theorem

» Theorem: For any training set separable with a margin of ~,
the following holds for the perceptron algorithm:
R2
mistakes made during training < —
gl

where R > ||f(z¢, y:) — f(x¢, y')|| for all (x¢,y:) € T and
Yy €V

» Thus, after a finite number of training iterations, the error on
the training set will converge to zero

> Let’s prove it! (proof taken from Collins '02)
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Linear Classifiers

Perceptron Learning Algorithm

Training data: 7 = {(x¢, yt)}lzl
1.

2
3
4.
5.
6
7
8

vVvyyvyy

w(o):O; i=0

forn:1..N
fort:1..T

Let y’ = argmax,,, wi) . f(ze, y')

ify’ #yr

witD) = wl) 4 Ry, yr) — (e, y')

i=i+1

return w'

7| > w1 are the weights before kth
mistake

> Suppose ki mistake made at the
tth example, (zt, yr)

’ s wkD) - f(me, 3

» o/ = argmax
> Yy £y
> W) = wlk=D) 4 f(we, ye) — f(e, v')

Y

Now: u-wlf) = u-wk=1) 4 u. (f(s, ye) — f(e, y')) > u-wk=D 45
Now: w(® =0 and u-w® = 0, by induction on k, u - w(k) > kv

Now: since u - w(k) < ||u|| x ||[w®)|| and [Ju|| = 1 then [|w(K)|| > kv

[[w?

[Iw?

IN

IWED12 4 [[f(e, ye) — f(e, 9|2 + 2w - (Rt ye) — f(e, ')
||W(k—1)||2 + R2

(since R > ||f(@:, ye) — f(@e, ¥')||

and w(k—1) f(xt, ye) — w1 f(t,y’) <0)
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Linear Classifiers

Perceptron Learning Algorithm

» We have just shown that |[w(¥)|| > k+ and
[Iw[] < [jwlk= 1|2 + R

» By induction on k and since w(® =0 and [|w(®|]2 =0
Iw|[? < kR

» Therefore,
k2"}/2 < Hw(k)H2 < kRZ
» and solving for k
R2
k< —
~
» Therefore the number of errors is bounded!

Generalized Linear Classifiers in NLP




Linear Classifiers

Perceptron Summary

» Learns a linear classifier that minimizes error

» Guaranteed to find a w in a finite amount of time
» Perceptron is an example of an Online Learning Algorithm
» w is updated based on a single training instance in isolation

W(H'l) = W(l) + f(mh yt) - f(wt’ y/)
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Linear Classifiers

Margin

Training Testing

Denote the
value of the
margin by ~y
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Linear Classifiers

Maximizing Margin

» For a training set 7

» Margin of a weight vector w is smallest v such that
w-f(x:,y:) —w- f(zr,y) > v

» for every training instance (x¢,y:) € 7, y' € Y
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Linear Classifiers

Maximizing Margin

» Intuitively maximizing margin makes sense

» More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2
€EX —F5——
72 x |T|
» Perceptron: we have shown that:

» If a training set is separable by some margin, the perceptron
will find a w that separates the data

» However, the perceptron does not pick w to maximize the
margin!
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Maximizing Margin

Let v >0

max
llwl[<1

such that:
w - f(wt; yt) —W- f(wta y,) >y
V('J:t, yt) € T
and ¥y’ € ),

» Note: algorithm still minimizes error

» ||w]| is bound since scaling trivially produces larger margin

ﬂ(W : f(wtu yt) —w- f(wtu y/)) > 6’71 for some /6 > 1
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Linear Classifiers

Max Margin = Min Norm

Let vy >0
Max Margin: Min Norm:
i g %”W”z
such that: _ such that:
w-f(ze, y:)—w-f(x:, y') > w-f(z;, y:)—w-f(x:,y') > 1
YV(xt,y:) €T V(xr,y:) €T
and y' € ), and y' € )

» Instead of fixing ||w|| we fix the margin v =1

» Technically v oc 1/||w]]
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Linear Classifiers

Support Vector Machines

1
min §||w||2
such that:
w - f(wt) yf) —w- f(mh y/) Z 1
V(mt, yt) c T
and ¥y’ € ),

» Quadratic programming problem — a well known convex
optimization problem

» Can be solved with out-of-the-box algorithms
» Batch Learning Algorithm — w set w.r.t. all training points
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Linear Classifiers

Support Vector Machines

» Problem: Sometimes |7 is far too large

» Thus the number of constraints might make solving the
quadratic programming problem very difficult

» Most common technique: Sequential Minimal Optimization

(SMO)

» Sparse: solution depends only on features in support vectors
T+
S @ +
- +
@ \® +
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Margin Infused Relaxed Algorithm (MIRA)

» Another option — maximize margin using an online algorithm
» Batch vs. Online

» Batch — update parameters based on entire training set (e.g.,
SVMs)

» Online — update parameters based on a single training instance
at a time (e.g., Perceptron)

» MIRA can be thought of as a max-margin perceptron or an
online SVM
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Linear Classifiers

MIRA

Online (MIRA):
Batch (SVMs): Training data: 7 = {(x;, yt)}ltzll
1 L w®=0i=0
min §||WH 2. forn:1..N
3. fort:1..T

SUCh that: 4 W(i+1) = arg minw* Hw* — W(’)H
, such that:

W.f(mt) yt)_w'f(mta Yy ) Z 1 W - f(mt’ yt) — W - f(mt7 y,) Z ]_
/ 3 Vy’ S .)_}t

V(xt,y:) €T and y' € Yy 5. P-4l

6. return w'

» MIRA has much smaller optimizations with only |J;|
constraints

» Cost: sub-optimal optimization
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Linear Classifiers

Summary

What we have covered
» Feature-based representations

» Linear Classifiers

» Perceptron
» Large-Margin — SVMs (batch) and MIRA (online)

What is next
» Logistic Regression / Maximum Entropy
» lIssues in parallelization
» Structured Learning

» Non-linear classifiers
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Linear Classifiers

Logistic Regression / Maximum Entropy

Define a conditional probability:

W‘f(w,y) /
P(y|.’B) = eZ—my where Z:I: = Z erf(a;,y)
y'ey
Note: still a linear classifier
eW~f(:c’y)
argmax P(y|lx) = argmax
Y Yy Z:c
= argmax eW‘f(fL‘,y)
Y
= argmax w-f(x,y)
Y
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Linear Classifiers

Logistic Regression / Maximum Entropy

Plylz) = S5 —

» Q: How do we learn weights w

» A: Set weights to maximize log-likelihood of training data:

w = arg£1ax1:[ P(y:|lze) = arg‘;lnaxzt: log P(y¢|x+)

» In a nut shell we set the weights w so that we assign as much
probability to the correct label y for each x in the training set
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Linear Classifiers

Aside: Min error versus max log-likelihood
» Highly related but not identical

» Example: consider a training set 7 with 1001 points

1000 x (xj,y =0)=[-1,1,0,0] for i=1...1000
1 x (x1001,y = 1) = [0,0,3,1]

» Now consider w = [—1,0,1,0]

» Error in this case is 0 — so w minimizes error
[-1,0,1,0]-[-1,1,0,0] =1 > [-1,0,1,0]-[0,0,—1,1] = —1
[-1,0,1,0]-[0,0,3,1] =3 >[-1,0,1,0] - [3,1,0,0] = —3
» However, log-likelihood = -126.9 (omit calculation)

Generalized Linear Classifiers in NLP




Linear Classifiers

Aside: Min error versus max log-likelihood
» Highly related but not identical

» Example: consider a training set 7 with 1001 points

1000 x (zj,y = 0) = [~1,1,0,0] for i=1...1000
1x (a:1001,y = ].) = [0,0,3, ].]

v

Now consider w = [—1,7,1,0]
Error in this case is 1 — so w does not minimizes error

v

[-1,7,1,0]-[-1,1,0,0] =8 > [-1,7,1,0] - [-1,1,0,0] = -1
[-1,7,1,0]-[0,0,3,1] =3 < [-1,7,1,0] - [3,1,0,0] = 4

» However, log-likelihood = -1.4

» Better log-likelihood and worse error
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Linear Classifiers

Aside: Min error versus max log-likelihood

» Max likelihood # min error

» Max likelihood pushes as much probability on correct labeling
of training instance
» Even at the cost of mislabeling a few examples

» Min error forces all training instances to be correctly classified

» SVMs with slack variables — allows some examples to be
classified wrong if resulting margin is improved on other
examples
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Linear Classifiers

Aside: Max margin versus max log-likelihood
» Let's re-write the max likelihood objective function
w = argmaxZIog P(y¢|xt)
w t

ve(a’ y)

Z yve(wy)

= argmaxZw f(x,y) — log Z eWf(=y)
w t Yy ey

= arg max Z log

» Pick w to maximize the score difference between the correct
labeling and every possible labeling

» Margin: maximize the difference between the correct and all
incorrect

» The above formulation is often referred to as the soft-margin
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Linear Classifiers

Logistic Regression

Yz where Z, = Z Wy)

y' ey

P(ylz) =
w = arg‘;lnaxz log P(y:|z:) (*)

» The objective function (*) is concave (take the 2nd derivative)

» Therefore there is a global maximum
» No closed form solution, but lots of numerical techniques

» Gradient methods (gradient ascent, conjugate gradient,
iterative scaling)
» Newton methods (limited-memory quasi-newton)
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Linear Classifiers

Gradient Ascent

W f:c

> Let F(w) =), log &= L)
» Want to find arg maxyy F(w)

» Setw?=0m

> Iterate until convergence

w =wlavF(w1)

» o > 0 and set so that F(w') > F(w'~!)
» VF(w) is gradient of F w.r.t. w

» A gradient is all partial derivatives over variables w;

> e, VF(w) = (500 F(W), 5o F(W), ..., 50— F(w))
» Gradient ascent will always find w to maximize F

41
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Linear Classifiers

The partial derivatives

> Need to find all partial derivatives %F(w)

F(w) = ZlogP(yt|mt)

W-f(:ct,yt)

= I
Z og ey eW: £z, )

er W; xTj(@e,yt)
_—
t

D oyey e2 Wixti(zey)
Yy
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Linear Classifiers

Partial derivatives - some reminders

1 ZlogF=+ZF

F Ox
> We always assume log is the natural logarithm log,
O oF — oF B
2. 5 L F
0
3. a2 F Zt a_th
4 9 F _ Giax F_F?ax G
" OxG G2

43
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Linear Classifiers

The partial derivatives

9 e WixFi(eeu)
G > log
ow; Zy/ey e Wixfi(ey)

e w; xfi(z.,y.)

> o
i i W, fJ ey’
ow; Zy’ey e WixTi(@ey)

Zyley eZ,- Wj><fj(fb‘t,y’) 9 EZJ' Wijj(mr,yr)
Z( e w;xfi(@eyo) )(8_W, ) ’ ezwj ijfj(wnyl))
y'e

Z( th ierWijj(mnyt)
t o WixFi(eeye) 7 Ow; Za,
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Linear Classifiers

The partial derivatives

Now,
P erijfj(mt’yt) B ZwtaiMerWijj(mh’yt)_erijfj(mt,’yz)aimet
ow; th B th
thezj ijﬂ-(mt,yz)fl.(a:t’ y:) — eXj ijﬂ(mt,yr)aimzmt
= Z;%t
> W xFi(e,ye) 0
e
= T(thf,‘(iﬂt,yt) - Wztct)
T4 !
o Wixfj(@e,ue)
= T(thfi(mfayf)
t
_ Z erij j(wuy/)fl.(mt’y’))
y'ey
because
i T yrey y' €y
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Linear Classifiers

The partial derivatives

From before,

9 ezjwjx (@e,yt) erWijj(wt,yt)
ow; Z - Zz (Zefi(@e ye)
i Tt Tt
_ Z erijfj(zmy’)fi(wt’y/))
y'ey
Sub this in,
i) Z o exWixfii)
F = : a
ow; (W) zt:( 35 Wjix j(mt:yt))(awi L,
fi(
= ZZ (Zeufiwe,ye) = D &=V (e, )
y' €Y
Z w; ><f (x¢,y”)
= Zf;(:ct,yt Z Z f(:ct,y/)
t t y'ey
St - Y Pl iey)
t t y'ey
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Linear Classifiers

FINALLY!!!

» After all that,

8(3v Zf whyt)_zzpylmt (zt,y )

t yey

» And the gradient is:

VF(w) = (aiWOF(w)7 ainF(w), A %F(w))

» So we can now use gradient assent to find w!!
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Linear Classifiers

Logistic Regression Summary

» Define conditional probability

W)

—

» Set weights to maximize log-likelihood of training data:

P(ylz) =

w = argvrvnaxz log P(y¢|xt)
t

» Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

— (o FOW). 5 F(w) o F(w)

w) = Zf,-(a:t, Ye) — Z Z P(y'|ze)fi(ze,y)

t y'ey

Generalized Linear Classifiers in NLP
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Linear Classifiers

Logistic Regression = Maximum Entropy

» Well known equivalence

» Max Ent: maximize entropy subject to constraints on features
» Empirical feature counts must equal expected counts

» Quick intuition
» Partial derivative in logistic regression

F(w Zf (ze,yt) — Z Z Py |z )fi(xe, y')

t yey

» First term is empirical feature counts and second term is

expected counts
» Derivative set to zero maximizes function
» Therefore when both counts are equivalent, we optimize the

logistic regression objective!

49
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Linear Classifiers

Online Logistic Regression??

» Stochastic Gradient Descent (SGD)
> Setw? = O™
> lterate until convergence
» Randomly select (x¢,y:) € T // often sequential

w =w 4 avF(w )
» ... well in our case it is an ascent (could just negate things)

» VF:(w'™!) is the gradient with respect to (¢, y:)

0

ow;

Fe(w) = fi(me,ye) — Y P(y'|@e)fi(ze,y)
y'ey

» Guaranteed to converge and is fast in practice [Zhang 2004]
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Linear Classifiers

Aside: Discriminative versus Generative

» Logistic Regression, Perceptron, MIRA, and SVMs are all
discriminative models

» A discriminative model sets it parameters to optimize some
notion of prediction

» Perceptron/SVMs — min error
» Logistic Regression — max likelihood of conditional distribution

» The conditional distribution is used for prediction

» Generative models attempt to explain the input as well

> e.g., Naive Bayes maximizes the likelihood of the joint
distribution P(x,y)

» This course is really about discriminative linear classifiers
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Parellelization

Issues in Parallelization

» What if 7 is enormous? Can’t even fit it into memory?
» Examples:

> All pages/images on the web
» Query logs of a search engine
> All patient records in a health-care system

» Can use online algorithms
» It may take long to see all interesting examples
> All examples may not exist in same location physically

» Can we parallelize learning? Yes!
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Parellelization

Parallel Logistic Regression / Gradient Ascent

» Core computation for gradient ascent

VF(w) = (ai%F(w), ainF(w), L %F(w))

0
S FW) =2 filwey) =D > Py/lzdfi(zey)
! t t y'cy
» Note that each (z;, y:) independently contributes to the
calculation

» If we have P machines, put |7|/P training instances on each
machinesothat 7 =7, UL U...U7p

» Compute above values on each machine and send to master

» On master machine, sum up gradients and do gradient ascent
update

Generalized Linear Classifiers in NLP




Parellelization

Parallel Logistic Regression / Gradient Ascent

» Algorithm:
» Set wd = O™
> lterate until convergence
» Compute VFy(w'™) in parallel on P machines
> VF(w™h = Zp VF,(wY)
»w =wl 4 avF(w?)
» Where VF,(w'~1) is the gradient of the training instances on
machine p, e.g.,

a%Fp(w) = fi(@ey) — > Y Pz fi(zey)

te7, teTp, y'ey
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Parellelization

Parallelization through Averaging

v

Again, we have P machinesand 7 =71 UL U...U7p

> Let w, be the weight vector if we just trained on 7,
> letw=3) w,

v

This is called parameter/weight averaging

v

Advantages: simple and very resource efficient (wrt network
bandwidth — no passing around gradients)

v

Disadvantages: sub optimal, unlike parallel gradient ascent

v

Does it work?
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Parellelization

[Mann et al. 2009]

v

Let w be the weight vector learned using gradient ascent

v

Let w,yg be the weight vector learned by averaging

v

If algorithm is stable with respect to w, then with high
probability:

1
W — Wayg | < O(—=)

VIT|
l.e., difference shrinks as training data increases
Stable algorithms: Logistic regression, SVMs, others??

Stability is beyond scope of course

vV v vy

See [Mann et al. 2009], which also has experimental study
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Parellelization

Parallel Wrap-up

» Many learning algorithms can be parallelized
» Logistic Regression and other gradient-based algorithms are
naturally paralleled without any heuristics

» Parameter averaging an easy solution that is efficient and
works for all algorithms

» Stable algorithms have some optimal bound guarantees

» See [Chu et al. 2007] for a nice overview of parallel ML
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Structured Learning

Structured Learning

v

Sometimes our output space ) is not simply a category

v

Examples:

» Parsing: for a sentence x, ) is the set of possible parse trees
» Sequence tagging: for a sentence x, ) is the set of possible
tag sequences, e.g., part-of-speech tags, named-entity tags
» Machine translation: for a source sentence x, ) is the set of

possible target language sentences

v

Can’t we just use our multiclass learning algorithms?

v

In all the cases, the size of the set ) is exponential in the
length of the input x

v

It is often non-trivial to run learning algorithms in such cases
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Structured Learning

Hidden Markov Models
l

» Generative Model — maximizes likelihood of P(x,y)
» We are looking at discriminative version of these

» Not just for sequences, though that will be the running
example
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Structured Learning

Structured Learning

» Sometimes our output space ) is not simply a category
» Can't we just use our multiclass learning algorithms?

» In all the cases, the size of the set ) is exponential in the
length of the input x

» It is often non-trivial to solve our learning algorithms in such
cases
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Structured Learning

Perceptron

Training data: 7 = {(wt,yt)}gl
1. w@=0;,/=0

2. forn:1.N

3 fort:1..T

4 Let y' = argmax,, w() - (e, y) (%)

5. if y' # y;

6. wi ) = wl) 4 f(z, y;) — f(zr, y')

7 i=i+1

8. return w'

(**) Solving the argmax requires a search over an exponential
space of outputs!
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Structured Learning

Large-Margin Classifiers

Online (MIRA):
Batch (SVMs): Training data: 7 = {(azt,yt)}ltzll
1 L w®=0i=0
min §||WH 2. forn:1.N
3. fort:1..T
such that: 4 wlitl) = arg min, HW* — W(i)H

such that:
w-f(xy,y:) —w-flz,y') > 1
vy' € Vi (**)

i=i+1

6. return w'

w-f(ze, y:)—w-f(z, y') > 1

\V/(il:t, yt) c 7 and y/ S jt (**)

o

(**) There are exponential constraints in the size of each input!!
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Structured Learning

Factor the Feature Representations

» We can make an assumption that our feature representations
factor relative to the output
» Example:
» Context Free Parsing:

f(x,y) = Z f(x, A — BC)

A—BCey
» Sequence Analysis — Markov Assumptions:
lyl

f(w’ y) = Z f(%}’i—h}’i)
i=1

» These kinds of factorizations allow us to run algorithms like
CKY and Viterbi to compute the argmax function
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Structured Learning

Example — Sequence Labeling

» Many NLP problems can be cast in this light
» Part-of-speech tagging
» Named-entity extraction
» Semantic role labeling
>

» Input: = xpx1...Xxp

» Qutput: ¥y =yoy1..-Yn

» Each y; € Vatom — which is small

» Each y € ¥V = Vo — which is large

» Example: part-of-speech tagging — Vatom is set of tags

x = John saw Mary with the  telescope
y = noun verb noun preposition article noun
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Structured Learning

Sequence Labeling — Output Interaction

x = John saw Mary with the  telescope
y = noun verb noun preposition article noun

» Why not just break up sequence into a set of multi-class
predictions?
» Because there are interactions between neighbouring tags

» What tag does “"saw” have?
» What if | told you the previous tag was article?
» What if it was noun?
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Structured Learning

Sequence Labeling — Markov Factorization

x = John saw Mary with the  telescope
y = noun verb noun preposition article noun

» Markov factorization — factor by adjacent labels
» First-order (like HMMs)

lyl

f(iD, y) = Z f(wa Yi-1, yl)
i=1

» kth-order

lyl
f(m7y) = Zf(mayifku ... 7yl'717yi)
i=k
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Structured Learning

Sequence Labeling — Features
x = John saw Mary with the  telescope

y = noun verb noun preposition article noun

» First-order
lyl

f(aja y) = Z f(iL‘, Yi-1, yl)
i=1

» f(x,yi_1,y;) is any feature of the input & two adjacent labels

1 if x; = "“saw”
fi(z,yi1,v) = and Yi—1 = noun and y; = verb 1 i x = “saw”
0  otherwise ! .
fj/(z,y;,l,y,») = and y; 1 = article and y; = verb
0  otherwise

» w; should get high weight and wj: should get low weight
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Structured Learning

Sequence Labeling - Inference

» How does factorization effect inference?

y = argmax w-f(z,y)
y
|yl
= argmax W-Zf(iB,Yi—l,}/i)
Yy =1
|yl
= argmax Zw-f(w,)/i—l,)/i)
i=1

» Can use the Viterbi algorithm
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Structured Learning

Sequence Labeling — Viterbi Algorithm

> Let oy ; be the score of the best labeling

» Of the sequence xpx1 ... X;
» Where yi =y

> Let's say we know «, then
» max, a, , is the score of the best labeling of the sequence

> «, ; can be calculate with the following recursion

Oéy70 =0.0 Vy € yatom

Qy,j = MaX Qyyj1 +W- f(z,y*, y)
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Structured Learning

Sequence Labeling - Back-pointers

v

But that only tells us what the best score is
Let (3, be the i-1° label in the best labeling

» Of the sequence xpx1 ... X;
> Where y; =y

v

v

By,i can be calculate with the following recursion

Byo=nil ¥y € Vatom

ﬂy,i = argmax Qyx ;-1 +W- f(m7y*7y)
yk

v

The last label in the best sequence is y, = argmax, 3, ,

v

And the second-to-last label is y,—1 argmax, B3, n-1 ...

> ... Yo =argmax, [y 1
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Structured Learning

Structured Learning

» We know we can solve the inference problem
» At least for sequence labeling
» But for many other problems where one can factor features
appropriately
» How does this change learning ..

» for the perceptron algorithm?
» for SVMs?
» for Logistic Regression?
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Structured Learning

Structured Perceptron

» Exactly like original perceptron
» Except now the argmax function uses factored features
» Which we can solve with algorithms like the Viterbi algorithm

» All of the original analysis carries over!!

w® =0;i=0
for n:1..N
fort:1..T
Let y/ = arg max
if Y # yr
wl+D) = wlD 4 f(ze, ye) — f(ze, ¥)
i=i+1
8. return w’

y’ wi) - (e, ') (**)

Noor N

(**) Solve the argmax with Viterbi for sequence problems!
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Structured Learning

Structured SVMs

1
min §||w||2
such that:
w - f(xtv yt) — W f(wta y/) Z E(}/t,y/)
Y(xs,y:) €T and ¢y € V; (*%)

» Still have an exponential # of constraints
» Feature factorizations also allow for solutions
» Maximum Margin Markov Networks (Taskar et al. '03)
» Structured SVMs (Tsochantaridis et al. '04)
» Note: Old fixed margin of 1 is now a fixed loss L(y:,y’)
between two structured outputs
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Structured Learning

Conditional Random Fields

» What about a structured logistic regression / maximum
entropy

» Such a thing exists — Conditional Random Fields (CRFs)

» Let's again consider the sequential case with 15 order
factorization

» Inference is identical to the structured perceptron — use Viterbi

ew-f(z,y)

argmax P(y|x) arg max
y

y Ze
= argmax RRCRY
y
= argmax w-f(xz,y)
y

= argmax Zw'f(m7YI—17}’i)
Y i=1
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Structured Learning

Conditional Random Fields

» However, learning does change

» Reminder: pick w to maximize log-likelihood of training data:

w = arg‘;lnaxz log P(y¢|xt)
t

» Take gradient and use gradient ascent

aiWiF(W) = Zf/(xt:yt) - Z Z P(y/’fct)fi(wt,y,)

t yey
» And the gradient is:

VE(W) = (G F). = FW). o F(w)

dwo
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Structured Learning

Conditional Random Fields

» Problem: sum over output space Y
0
F(w) D fi(mey) =Y > P |@e)fi(ze,y)
t

ow;
! t oyley

DD fi@eyri-nye) =D > > P@ @)@y _1,))

t =1 t yley =1

» Can easily calculate first term — just empirical counts

» What about the second term?
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Structured Learning

Conditional Random Fields

» Problem: sum over output space Y
> > Pl yiy))
t yeYj=1
» We need to show we can compute it for arbitrary x;
Z ZP(y’\azt)f,-(mt,yj,l,yj)
yey j=1

» Solution: the forward-backward algorithm
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Structured Learning

Forward Algorithm

> Let a] be the forward scores
> Let |z¢| =n
» T is the sum over all labelings of xg ... x;, such that y/, = u

o = Z ew'f(“’t’yl)
Iy,|:m7 yr/n:u
— Z eE,-:1 W‘f(wuyj—lvyj)
[Y'|=m yh=u
» i.e., the sum of all labelings of length m, ending at position m
with label u
» Note then that

Ly, = Z W ey — Z ap
y’ u
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Structured Learning

Forward Algorithm

» We can fill in « as follows:

2 = 10 Wu

aLrln _ § :a‘r/n—l « eW~f(a:t,v,u)
v
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Structured Learning

Backward Algorithm

> Let 3" be the symmetric backward scores
> i.e., the sum over all labelings of x, ... x, such that x,, = u

» We can fill in 3 as follows:

B, = 10 Vu
ﬁlrln _ Zﬁ\r/n—l—lXeW-f(mt,u,v)

v

» Note: 3 is overloaded — different from back-pointers
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Structured Learning

Conditional Random Fields

» Let's show we can compute it for arbitrary x;
Z Zp(yl|mf)fi(wt’y_/{—lvyj{)
yey j=1

» So we can re-write it as:

j—1 wf(zey! 1 y)) J
o, xe 1) % B,

Yi—
> e 109)
j=1 ‘

» Forward-backward can calculate partial derivatives efficiently
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Structured Learning

Conditional Random Fields Summary

» Inference: Viterbi

» Learning: Use the forward-backward algorithm
» What about not sequential problems

» Context-Free parsing — can use inside-outside algorithm
» General problems — message passing & belief propagation

» Great tutorial by [Sutton and McCallum 2006]
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Structured Learning

Structured Learning Summary

» Can't use multiclass algorithms — search space too large

» Solution: factor representations
» Can allow for efficient inference and learning

» Showed for sequence learning: Viterbi + forward-backward
» But also true for other structures

» CFG parsing: CKY + inside-outside

» Dependency Parsing: Spanning tree / Eisner algorithm

> General graphs: junction-tree and message passing
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Non-Linear Classifiers

» End of linear classifiers!!

» Brief look at non-linear classification ...
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Non-Linear Classifiers

Non-Linear Classifiers

» Some data sets require more than a linear classifier to be
correctly modeled
» A lot of models out there
» K-Nearest Neighbours (see Walter's lecture)
» Decision Trees
» Kernels
» Neural Networks
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Non-Linear Classifiers

Kernels

» A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

d(xe, ) €R
» Let M be a n X n matrix such that ...

Mt,r = ¢(wta mr)

» ... for any n points. Called the Gram matrix.

» Symmetric:
d)(mtv mr) = d)(ml’a mt’)

» Positive definite: for all non-zero v
vMv T >0
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Non-Linear Classifiers

Kernels

» Mercer's Theorem: for any kernal ¢, there exists an f, such

that:
P(xe, @) = f(w:) - F(z,)

» Since our features are over pairs (x,y), we will write kernels
over pairs

o((xe, ye), (zr,yr)) = f(xe, ye) - F(xr, yr)
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(x¢, yt)}gl
1. w®=0i=0

2 forn:1..N

3 fort:1..T

4, Let y = arg max,, w) . (e, y)

5. if y# ye

6. wit) = wl) 4 f(@,, ye) — f(r, y)

7 i=i+1

8 return w'

» Each feature function f(x;,y;) is added and f(x;,y) is
subtracted to w say ay,; times

> ay¢ is the # of times during learning label y is predicted for
example t

» Thus,
W= Z oy t[f(ze, ye) — F(ze, y)]

t’y
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

» We can re-write the argmax function as:

yx = argmaxw(i)-f(mt,y*)
-

= arg r*naxz oy t[f(@e, ye) — f(ze, )] - (e, y7)

Y ty
= arg maXZ ay,t[f(wtv yt) . f(wtv y*) - f(mt, y) : f(a:t’ y*)]
y* ty

= argmax Y agald((@e o), (@e,y") — o((ze,y), (22, y7))]

ty

» We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(:, yt)}ltZl

1. Vy,tsetay:=0

2. forn:1.N

3 fort:1..T

4. Let y* = argmax, >, , oy t[d((2e, yr), (26, ¥*)) — (e, y), (e, y™))]
5 if y* # yr

6 Oéy*7t:Oéy*7t+1

» Given a new instance x

Y= arg max Y agdd((@eye), (2, 97)—((2e. y), (z,y7))]

t?y

» But it seems like we have just complicated things???
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Non-Linear Classifiers

Kernels = Tractable Non-Linearity

» A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

» Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

» Thus, kernels allow us to efficiently learn non-linear classifiers
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Linear Classifiers in High Dimension

1
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Non-Linear Classifiers

Example: Polynomial Kernel

» f(x) cRM, d>2

> ¢(a:t, CCS) = (f(:l:t) . f(ws) + 1)d
» O(M) to calculate for any d!!

» But in the original feature space (primal space)
» Consider d =2, M =2, and f(x;) = [x¢.1, X¢,2]

(F(aee) - f(s) + 1) ([xe.1, xe 2] - [xs,1, %s,2] + 1)

= (xe,1%,1 4 xe,2xs,2 + 1)°
(xe,1x5,1)% 4 (Xe.2%5,2)? + 2(xe,1x5,1) + 2(x¢,2%5.2)

+2(xe,1x0,2%5,1%5,2) + (1)?
which equals:

[(xe,1)%, (x¢,2), V2%¢,1, V2xe.2, V2xe1%0,2, 1] - [(%6,1)%, (x5,2)%5 V2Xs.1, V2xs 2, V25,1%5,2, 1]
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Non-Linear Classifiers

Popular Kernels

» Polynomial kernel

O(@e, ws) = (f(xe) - f(xs) +1)°

» Gaussian radial basis kernel (infinite feature space
representation!)

—[[f(:) — f(ws)llz)
20

» String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

» Tree kernels [Collins and Duffy 2002]

¢(wt) ws) = eXp(
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Non-Linear Classifiers

Kernels Summary

» Can turn a linear classifier into a non-linear classifier
» Kernels project feature space to higher dimensions

» Sometimes exponentially larger
» Sometimes an infinite space!

» Can “kernalize” algorithms to make them non-linear
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Wrap Up

Main Points of Lecture

» Feature representations

» Choose feature weights, w, to maximize some function (min
error, max margin)

» Batch learning (SVMs, Logistic Regression) versus online
learning (perceptron, MIRA, SGD)

» The right way to parallelize
» Structured Learning

» Linear versus Non-linear classifiers
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