
Generalized Linear Classifiers in NLP

(or Discriminative Generalized Linear Feature-Based Classifiers)

Graduate School of Language Technology, Sweden 2009

Ryan McDonald

Google Inc., New York, USA
E-mail: ryanmcd@google.com

Generalized Linear Classifiers in NLP 1(96)

introduction

Generalized Linear Classifiers

◮ Go onto ACL Anthology

◮ Search for: “Naive Bayes”, “Maximum Entropy”,“Logistic
Regression”,“SVM”,“Perceptron”

◮ Do the same on Google Scholar
◮ “Maximum Entropy”&“NLP”2660 hits, 141 before 2000
◮ “SVM”&“NLP”2210 hits, 16 before 2000
◮ “Perceptron”&“NLP”, 947 hits, 118 before 2000

◮ All are examples of linear classifiers

◮ All have become important tools in any NLP/CL researchers
tool-box in past 10 years

Generalized Linear Classifiers in NLP 2(96)

introduction

Attitudes

1. Treat classifiers as black-box in language systems
◮ Fine for many problems
◮ Separates out the language research from the machine learning

research
◮ Practical – many off the shelf algorithms available

2. Fuse classifiers with language systems
◮ Can use our understanding of classifiers to tailor them to our

needs
◮ Optimizations (both computational and parameters)
◮ But we need to understand how they work ... at least to some

degree (*)
◮ Can also tell us something about how humans manage

language (see Walter’s talk)

(*) What this course is about

Generalized Linear Classifiers in NLP 3(96)

introduction

Lecture Outline

◮ Preliminaries: input/output, features, etc.

◮ Linear Classifiers
◮ Perceptron
◮ Large-Margin Classifiers (SVMs, MIRA)
◮ Logistic Regression (Maximum Entropy)

◮ Issues in parallelization

◮ Structured Learning with Linear Classifiers
◮ Structured Perceptron
◮ Conditional Random Fields

◮ Non-linear Classifiers with Kernels

Generalized Linear Classifiers in NLP 4(96)

Preliminaries

Inputs and Outputs

◮ Input: x ∈ X
◮ e.g., document or sentence with some words x = w1 . . . wn, or

a series of previous actions

◮ Output: y ∈ Y
◮ e.g., parse tree, document class, part-of-speech tags,

word-sense

◮ Input/Output pair: (x, y) ∈ X × Y
◮ e.g., a document x and its label y

◮ Sometimes x is explicit in y, e.g., a parse tree y will contain
the sentence x

Generalized Linear Classifiers in NLP 5(96)

Preliminaries

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!

Generalized Linear Classifiers in NLP 6(96)

Preliminaries

Feature Representations

◮ We assume a mapping from input-output pairs (x, y) to a
high dimensional feature vector

◮ f(x,y) : X × Y → R
m

◮ For some cases, i.e., binary classification Y = {−1, +1}, we
can map only from the input to the feature space

◮ f(x) : X → R
m

◮ However, most problems in NLP require more than two
classes, so we focus on the multi-class case

◮ For any vector v ∈ R
m, let vj be the j th value

Generalized Linear Classifiers in NLP 7(96)

Preliminaries

Examples

◮ x is a document and y is a label

fj(x, y) =







1 if x contains the word“interest”
and y =“financial”

0 otherwise

fj(x, y) = % of words in x with punctuation and y =“scientific”

◮ x is a word and y is a part-of-speech tag

fj(x, y) =

{

1 if x = “bank”and y = Verb
0 otherwise

Generalized Linear Classifiers in NLP 8(96)

Preliminaries

Example 2

◮ x is a name, y is a label classifying the name

f0(x, y) =

8

<

:

1 if x contains “George”
and y =“Person”

0 otherwise

f1(x, y) =

8

<

:

1 if x contains “Washington”
and y =“Person”

0 otherwise

f2(x, y) =

8

<

:

1 if x contains “Bridge”
and y =“Person”

0 otherwise

f3(x, y) =

8

<

:

1 if x contains “General”
and y =“Person”

0 otherwise

f4(x, y) =

8

<

:

1 if x contains “George”
and y =“Object”

0 otherwise

f5(x, y) =

8

<

:

1 if x contains “Washington”
and y =“Object”

0 otherwise

f6(x, y) =

8

<

:

1 if x contains “Bridge”
and y =“Object”

0 otherwise

f7(x, y) =

8

<

:

1 if x contains “General”
and y =“Object”

0 otherwise

◮ x=General George Washington, y=Person → f(x, y) = [1 1 0 1 0 0 0 0]

◮ x=George Washington Bridge, y=Object → f(x, y) = [0 0 0 0 1 1 1 0]

◮ x=George Washington George, y=Object → f(x, y) = [0 0 0 0 1 1 0 0]

Generalized Linear Classifiers in NLP 9(96)

Preliminaries

Block Feature Vectors

◮ x=General George Washington, y=Person → f(x, y) = [1 1 0 1 0 0 0 0]

◮ x=George Washington Bridge, y=Object → f(x, y) = [0 0 0 0 1 1 1 0]

◮ x=George Washington George, y=Object → f(x, y) = [0 0 0 0 1 1 0 0]

◮ Each equal size block of the feature vector corresponds to one
label

◮ Non-zero values allowed only in one block

Generalized Linear Classifiers in NLP 10(96)

Linear Classifiers

Linear Classifiers

◮ Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

◮ Let w ∈ R
m be a high dimensional weight vector

◮ If we assume that w is known, then we our classifier as
◮ Multiclass Classification: Y = {0, 1, . . . ,N}

y = arg max
y

w · f(x,y)

= arg max
y

m
∑

j=0

wj × fj(x,y)

◮ Binary Classification just a special case of multiclass

Generalized Linear Classifiers in NLP 11(96)

Linear Classifiers

Linear Classifiers - Bias Terms

◮ Often linear classifiers presented as

y = arg max
y

m
∑

j=0

wj × fj(x, y) + by

◮ Where b is a bias or offset term

◮ But this can be folded into f

x=General George Washington, y=Person → f(x, y) = [1 1 0 1 1 0 0 0 0 0]

x=General George Washington, y=Object → f(x, y) = [0 0 0 0 0 1 1 0 1 1]

f4(x, y) =



1 y =“Person”
0 otherwise

f9(x, y) =



1 y =“Object”
0 otherwise

◮ w4 and w9 are now the bias terms for the labels

Generalized Linear Classifiers in NLP 12(96)

Linear Classifiers

Binary Linear Classifier

Divides all points:

Generalized Linear Classifiers in NLP 13(96)

Linear Classifiers

Multiclass Linear Classifier

Defines regions of space:

◮ i.e., + are all points (x, y) where + = arg max
y

w · f(x, y)

Generalized Linear Classifiers in NLP 14(96)

Linear Classifiers

Separability

◮ A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable

◮ This can also be defined mathematically (and we will shortly)

Generalized Linear Classifiers in NLP 15(96)

Linear Classifiers

Supervised Learning – how to find w

◮ Input: training examples T = {(xt , yt)}
|T |
t=1

◮ Input: feature representation f

◮ Output: w that maximizes/minimizes some important
function on the training set

◮ minimize error (Perceptron, SVMs, Boosting)
◮ maximize likelihood of data (Logistic Regression, Naive Bayes)

◮ Assumption: The training data is separable
◮ Not necessary, just makes life easier
◮ There is a lot of good work in machine learning to tackle the

non-separable case

Generalized Linear Classifiers in NLP 16(96)

Linear Classifiers

Perceptron

◮ Choose a w that minimizes error

w = arg min
w

∑

t

1 − 1[yt = arg max
y

w · f(xt , y)]

1[p] =

{

1 p is true
0 otherwise

◮ This is a 0-1 loss function
◮ Aside: when minimizing error people tend to use hinge-loss or

other smoother loss functions

Generalized Linear Classifiers in NLP 17(96)

Linear Classifiers

Perceptron Learning Algorithm

Training data: T = {(xt , yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg max

y′ w(i) · f(xt , y
′)

5. if y
′ 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y
′)

7. i = i + 1
8. return wi

Generalized Linear Classifiers in NLP 18(96)

Linear Classifiers

Perceptron: Separability and Margin

◮ Given an training instance (xt , yt), define:
◮ Ȳt = Y − {yt}
◮ i.e., Ȳt is the set of incorrect labels for xt

◮ A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · f(xt , yt) − u · f(xt , y
′) ≥ γ

for all y
′ ∈ Ȳt and ||u|| =

√

∑

j u
2
j

◮ Assumption: the training set is separable with margin γ

Generalized Linear Classifiers in NLP 19(96)

Linear Classifiers

Perceptron: Main Theorem

◮ Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

mistakes made during training ≤
R2

γ2

where R ≥ ||f(xt , yt) − f(xt , y
′)|| for all (xt , yt) ∈ T and

y
′ ∈ Ȳt

◮ Thus, after a finite number of training iterations, the error on
the training set will converge to zero

◮ Let’s prove it! (proof taken from Collins ’02)

Generalized Linear Classifiers in NLP 20(96)

Linear Classifiers

Perceptron Learning Algorithm
Training data: T = {(xt , yt)}

|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg max

y′ w(i) · f(xt , y
′)

5. if y
′ 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y
′)

7. i = i + 1

8. return wi

◮ w (k−1) are the weights before kth

mistake

◮ Suppose kth mistake made at the
tth example, (xt , yt)

◮ y
′ = arg max

y′ w(k−1) · f(xt , y
′)

◮ y
′ 6= yt

◮ w (k) = w(k−1) + f(xt , yt)− f(xt , y
′)

◮ Now: u · w(k) = u · w(k−1) + u · (f(xt , yt) − f(xt , y
′)) ≥ u · w(k−1) + γ

◮ Now: w(0) = 0 and u · w(0) = 0, by induction on k, u · w(k) ≥ kγ

◮ Now: since u · w(k) ≤ ||u|| × ||w(k)|| and ||u|| = 1 then ||w(k)|| ≥ kγ

◮ Now:

||w(k)||2 = ||w(k−1)||2 + ||f(xt , yt) − f(xt , y
′)||2 + 2w(k−1) · (f(xt , yt) − f(xt , y

′))

||w(k)||2 ≤ ||w(k−1)||2 + R2

(since R ≥ ||f(xt , yt) − f(xt , y
′)||

and w(k−1) · f(xt , yt) − w(k−1) · f(xt , y
′) ≤ 0)

Generalized Linear Classifiers in NLP 21(96)

Linear Classifiers

Perceptron Learning Algorithm

◮ We have just shown that ||w(k)|| ≥ kγ and
||w(k)||2 ≤ ||w(k−1)||2 + R2

◮ By induction on k and since w(0) = 0 and ||w(0)||2 = 0

||w(k)||2 ≤ kR2

◮ Therefore,
k2γ2 ≤ ||w(k)||2 ≤ kR2

◮ and solving for k

k ≤
R2

γ2

◮ Therefore the number of errors is bounded!

Generalized Linear Classifiers in NLP 22(96)

Linear Classifiers

Perceptron Summary

◮ Learns a linear classifier that minimizes error

◮ Guaranteed to find a w in a finite amount of time

◮ Perceptron is an example of an Online Learning Algorithm
◮ w is updated based on a single training instance in isolation

w(i+1) = w(i) + f(xt ,yt) − f(xt ,y
′)

Generalized Linear Classifiers in NLP 23(96)

Linear Classifiers

Margin

Training Testing

Denote the
value of the
margin by γ

Generalized Linear Classifiers in NLP 24(96)

Linear Classifiers

Maximizing Margin

◮ For a training set T

◮ Margin of a weight vector w is smallest γ such that

w · f(xt , yt) − w · f(xt , y
′) ≥ γ

◮ for every training instance (xt , yt) ∈ T , y
′ ∈ Ȳt

Generalized Linear Classifiers in NLP 25(96)

Linear Classifiers

Maximizing Margin

◮ Intuitively maximizing margin makes sense

◮ More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ǫ ∝
R2

γ2 × |T |

◮ Perceptron: we have shown that:
◮ If a training set is separable by some margin, the perceptron

will find a w that separates the data
◮ However, the perceptron does not pick w to maximize the

margin!

Generalized Linear Classifiers in NLP 26(96)

Linear Classifiers

Maximizing Margin

Let γ > 0
max

||w||≤1
γ

such that:
w · f(xt , yt) − w · f(xt , y

′) ≥ γ

∀(xt , yt) ∈ T

and y
′ ∈ Ȳt

◮ Note: algorithm still minimizes error

◮ ||w|| is bound since scaling trivially produces larger margin

β(w · f(xt , yt) − w · f(xt , y
′)) ≥ βγ, for some β ≥ 1

Generalized Linear Classifiers in NLP 27(96)

Linear Classifiers

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||w||≤1

γ

such that:

w·f(xt ,yt)−w·f(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y
′ ∈ Ȳt

=

Min Norm:

min
w

1

2
||w||2

such that:

w·f(xt ,yt)−w·f(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y
′ ∈ Ȳt

◮ Instead of fixing ||w|| we fix the margin γ = 1

◮ Technically γ ∝ 1/||w||

Generalized Linear Classifiers in NLP 28(96)

Linear Classifiers

Support Vector Machines

min
1

2
||w||2

such that:
w · f(xt , yt) − w · f(xt , y

′) ≥ 1

∀(xt , yt) ∈ T

and y
′ ∈ Ȳt

◮ Quadratic programming problem – a well known convex
optimization problem

◮ Can be solved with out-of-the-box algorithms

◮ Batch Learning Algorithm – w set w.r.t. all training points

Generalized Linear Classifiers in NLP 29(96)

Linear Classifiers

Support Vector Machines

◮ Problem: Sometimes |T | is far too large

◮ Thus the number of constraints might make solving the
quadratic programming problem very difficult

◮ Most common technique: Sequential Minimal Optimization
(SMO)

◮ Sparse: solution depends only on features in support vectors

Generalized Linear Classifiers in NLP 30(96)

Linear Classifiers

Margin Infused Relaxed Algorithm (MIRA)

◮ Another option – maximize margin using an online algorithm

◮ Batch vs. Online
◮ Batch – update parameters based on entire training set (e.g.,

SVMs)
◮ Online – update parameters based on a single training instance

at a time (e.g., Perceptron)

◮ MIRA can be thought of as a max-margin perceptron or an
online SVM

Generalized Linear Classifiers in NLP 31(96)

Linear Classifiers

MIRA

Batch (SVMs):

min
1

2
||w||2

such that:

w·f(xt ,yt)−w·f(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y
′ ∈ Ȳt

Online (MIRA):

Training data: T = {(xt ,yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T
4. w(i+1) = arg minw*

∥

∥w* − w(i)
∥

∥

such that:
w · f(xt ,yt) − w · f(xt ,y

′) ≥ 1
∀y

′ ∈ Ȳt

5. i = i + 1
6. return wi

◮ MIRA has much smaller optimizations with only |Ȳt |
constraints

◮ Cost: sub-optimal optimization

Generalized Linear Classifiers in NLP 32(96)

Linear Classifiers

Summary

What we have covered

◮ Feature-based representations

◮ Linear Classifiers
◮ Perceptron
◮ Large-Margin – SVMs (batch) and MIRA (online)

What is next

◮ Logistic Regression / Maximum Entropy

◮ Issues in parallelization

◮ Structured Learning

◮ Non-linear classifiers

Generalized Linear Classifiers in NLP 33(96)

Linear Classifiers

Logistic Regression / Maximum Entropy

Define a conditional probability:

P(y|x) =
ew·f(x,y)

Zx

, where Zx =
∑

y′∈Y
ew·f(x,y′)

Note: still a linear classifier

arg max
y

P(y|x) = arg max
y

ew·f(x,y)

Zx

= arg max
y

ew·f(x,y)

= arg max
y

w · f(x, y)

Generalized Linear Classifiers in NLP 34(96)

Linear Classifiers

Logistic Regression / Maximum Entropy

P(y|x) =
ew·f(x,y)

Zx

◮ Q: How do we learn weights w

◮ A: Set weights to maximize log-likelihood of training data:

w = arg max
w

∏

t

P(yt |xt) = arg max
w

∑

t

log P(yt |xt)

◮ In a nut shell we set the weights w so that we assign as much
probability to the correct label y for each x in the training set

Generalized Linear Classifiers in NLP 35(96)

Linear Classifiers

Aside: Min error versus max log-likelihood

◮ Highly related but not identical

◮ Example: consider a training set T with 1001 points

1000 × (xi , y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1 × (x1001, y = 1) = [0, 0, 3, 1]

◮ Now consider w = [−1, 0, 1, 0]

◮ Error in this case is 0 – so w minimizes error

[−1, 0, 1, 0] · [−1, 1, 0, 0] = 1 > [−1, 0, 1, 0] · [0, 0,−1, 1] = −1

[−1, 0, 1, 0] · [0, 0, 3, 1] = 3 > [−1, 0, 1, 0] · [3, 1, 0, 0] = −3

◮ However, log-likelihood = -126.9 (omit calculation)

Generalized Linear Classifiers in NLP 36(96)

Linear Classifiers

Aside: Min error versus max log-likelihood

◮ Highly related but not identical

◮ Example: consider a training set T with 1001 points

1000 × (xi , y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1 × (x1001, y = 1) = [0, 0, 3, 1]

◮ Now consider w = [−1, 7, 1, 0]

◮ Error in this case is 1 – so w does not minimizes error

[−1, 7, 1, 0] · [−1, 1, 0, 0] = 8 > [−1, 7, 1, 0] · [−1, 1, 0, 0] = −1

[−1, 7, 1, 0] · [0, 0, 3, 1] = 3 < [−1, 7, 1, 0] · [3, 1, 0, 0] = 4

◮ However, log-likelihood = -1.4

◮ Better log-likelihood and worse error

Generalized Linear Classifiers in NLP 37(96)

Linear Classifiers

Aside: Min error versus max log-likelihood

◮ Max likelihood 6= min error

◮ Max likelihood pushes as much probability on correct labeling
of training instance

◮ Even at the cost of mislabeling a few examples

◮ Min error forces all training instances to be correctly classified

◮ SVMs with slack variables – allows some examples to be
classified wrong if resulting margin is improved on other
examples

Generalized Linear Classifiers in NLP 38(96)

Linear Classifiers

Aside: Max margin versus max log-likelihood

◮ Let’s re-write the max likelihood objective function

w = arg max
w

∑

t

log P(yt |xt)

= arg max
w

∑

t

log
ew·f(x,y)

∑

y′∈Y ew·f(x,y′)

= arg max
w

∑

t

w · f(x, y) − log
∑

y′∈Y
ew·f(x,y′)

◮ Pick w to maximize the score difference between the correct
labeling and every possible labeling

◮ Margin: maximize the difference between the correct and all
incorrect

◮ The above formulation is often referred to as the soft-margin

Generalized Linear Classifiers in NLP 39(96)

Linear Classifiers

Logistic Regression

P(y|x) =
ew·f(x,y)

Zx

, where Zx =
∑

y′∈Y
ew·f(x,y′)

w = arg max
w

∑

t

log P(yt |xt) (*)

◮ The objective function (*) is concave (take the 2nd derivative)

◮ Therefore there is a global maximum

◮ No closed form solution, but lots of numerical techniques
◮ Gradient methods (gradient ascent, conjugate gradient,

iterative scaling)
◮ Newton methods (limited-memory quasi-newton)

Generalized Linear Classifiers in NLP 40(96)

Linear Classifiers

Gradient Ascent

◮ Let F (w) =
∑

t log ew·f(xt ,yt)

Zx

◮ Want to find arg maxw F (w)
◮ Set w0 = Om

◮ Iterate until convergence

wi = wi−1 + α▽F (wi−1)

◮ α > 0 and set so that F (wi) > F (wi−1)

◮ ▽F (w) is gradient of F w.r.t. w
◮ A gradient is all partial derivatives over variables wi

◮ i.e., ▽F (w) = (∂
∂w0

F (w), ∂
∂w1

F (w), . . . , ∂
∂wm

F (w))

◮ Gradient ascent will always find w to maximize F

Generalized Linear Classifiers in NLP 41(96)

Linear Classifiers

The partial derivatives

◮ Need to find all partial derivatives ∂
∂wi

F (w)

F (w) =
∑

t

log P(yt |xt)

=
∑

t

log
ew·f(xt ,yt)

∑

y′∈Y ew·f(xt ,y′)

=
∑

t

log
e

P

j wj×fj (xt ,yt)

∑

y′∈Y e
P

j wj×fj (xt ,y′)

Generalized Linear Classifiers in NLP 42(96)

Linear Classifiers

Partial derivatives - some reminders

1. ∂
∂x log F = 1

F
∂
∂x F

◮ We always assume log is the natural logarithm loge

2. ∂
∂x eF = eF ∂

∂x F

3. ∂
∂x

∑

t Ft =
∑

t
∂
∂x Ft

4. ∂
∂x

F
G =

G ∂
∂x

F−F ∂
∂x

G

G2

Generalized Linear Classifiers in NLP 43(96)

Linear Classifiers

The partial derivatives

∂

∂wi
F (w) =

∂

∂wi

∑

t

log
e

P

j wj×fj (xt ,yt)

∑

y′∈Y e
P

j wj×fj (xt ,y′)

=
∑

t

∂

∂wi
log

e
P

j wj×fj (xt ,yt)

∑

y′∈Y e
P

j wj×fj (xt ,y′)

=
∑

t

(

∑

y′∈Y e
P

j wj×fj (xt ,y
′)

e
P

j wj×fj (xt ,yt)
)(

∂

∂wi

e
P

j wj×fj (xt ,yt)

∑

y′∈Y e
P

wj
wj×fj (xt ,y′)

)

=
∑

t

(
Zxt

e
P

j wj×fj (xt ,yt)
)(

∂

∂wi

e
P

j wj×fj (xt ,yt)

Zxt

)

Generalized Linear Classifiers in NLP 44(96)

Linear Classifiers

The partial derivatives
Now,

∂

∂wi

e

P

j wj×fj (xt ,yt)

Zxt

=
Zxt

∂
∂wi

e

P

j wj×fj (xt ,yt) − e

P

j wj×fj (xt ,yt) ∂
∂wi

Zxt

Z 2
xt

=
Zxt e

P

j wj×fj (xt ,yt)fi (xt , yt) − e

P

j wj×fj (xt ,yt) ∂
∂wi

Zxt

Z 2
xt

=
e

P

j wj×fj (xt ,yt)

Z 2
xt

(Zxt fi (xt , yt) −
∂

∂wi
Zxt)

=
e

P

j wj×fj (xt ,yt)

Z 2
xt

(Zxt fi (xt , yt)

−
X

y′∈Y

e

P

j wj×fj (xt ,y
′)fi (xt , y

′))

because

∂

∂wi
Zxt =

∂

∂wi

X

y′∈Y

e

P

j wj×fj (xt ,y
′) =

X

y′∈Y

e

P

j wj×fj (xt ,y
′)fi (xt , y

′)

Generalized Linear Classifiers in NLP 45(96)

Linear Classifiers

The partial derivatives
From before,

∂

∂wi

e

P

j wj×fj (xt ,yt)

Zxt

=
e

P

j wj×fj (xt ,yt)

Z 2
xt

(Zxt fi (xt , yt)

−
X

y′∈Y

e

P

j wj×fj (xt ,y
′)fi (xt , y

′))

Sub this in,

∂

∂wi
F (w) =

X

t

(
Zxt

e

P

j wj×fj (xt ,yt)
)(

∂

∂wi

e

P

j wj×fj (xt ,yt)

Zxt

)

=
X

t

1

Zxt

(Zxt fi (xt , yt) −
X

y′∈Y

e

P

j wj×fj (xt ,y
′)fi (xt , y

′)))

=
X

t

fi (xt , yt) −
X

t

X

y′∈Y

e

P

j wj×fj (xt ,y
′)

Zxt

fi (xt , y
′)

=
X

t

fi (xt , yt) −
X

t

X

y′∈Y

P(y′|xt)fi (xt , y
′)

Generalized Linear Classifiers in NLP 46(96)

Linear Classifiers

FINALLY!!!

◮ After all that,

∂

∂wi
F (w) =

∑

t

fi (xt , yt) −
∑

t

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

◮ And the gradient is:

▽F (w) = (
∂

∂w0
F (w),

∂

∂w1
F (w), . . . ,

∂

∂wm
F (w))

◮ So we can now use gradient assent to find w!!

Generalized Linear Classifiers in NLP 47(96)

Linear Classifiers

Logistic Regression Summary

◮ Define conditional probability

P(y|x) =
ew·f(x,y)

Zx

◮ Set weights to maximize log-likelihood of training data:

w = arg max
w

∑

t

log P(yt |xt)

◮ Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

▽F (w) = (
∂

∂w0
F (w),

∂

∂w1
F (w), . . . ,

∂

∂wm
F (w))

∂

∂wi
F (w) =

∑

t

fi (xt , yt) −
∑

t

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

Generalized Linear Classifiers in NLP 48(96)

Linear Classifiers

Logistic Regression = Maximum Entropy

◮ Well known equivalence

◮ Max Ent: maximize entropy subject to constraints on features
◮ Empirical feature counts must equal expected counts

◮ Quick intuition
◮ Partial derivative in logistic regression

∂

∂wi
F (w) =

∑

t

fi (xt ,yt) −
∑

t

∑

y′∈Y

P(y′|xt)fi (xt ,y
′)

◮ First term is empirical feature counts and second term is
expected counts

◮ Derivative set to zero maximizes function
◮ Therefore when both counts are equivalent, we optimize the

logistic regression objective!

Generalized Linear Classifiers in NLP 49(96)

Linear Classifiers

Online Logistic Regression??

◮ Stochastic Gradient Descent (SGD)
◮ Set w0 = Om

◮ Iterate until convergence
◮ Randomly select (xt , yt) ∈ T // often sequential

wi = wi−1 + α▽Ft(w
i−1)

◮ ... well in our case it is an ascent (could just negate things)

◮ ▽Ft(w
i−1) is the gradient with respect to (xt , yt)

∂

∂wi
Ft(w) = fi (xt , yt) −

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

◮ Guaranteed to converge and is fast in practice [Zhang 2004]

Generalized Linear Classifiers in NLP 50(96)

Linear Classifiers

Aside: Discriminative versus Generative

◮ Logistic Regression, Perceptron, MIRA, and SVMs are all
discriminative models

◮ A discriminative model sets it parameters to optimize some
notion of prediction

◮ Perceptron/SVMs – min error
◮ Logistic Regression – max likelihood of conditional distribution

◮ The conditional distribution is used for prediction

◮ Generative models attempt to explain the input as well
◮ e.g., Naive Bayes maximizes the likelihood of the joint

distribution P(x,y)

◮ This course is really about discriminative linear classifiers

Generalized Linear Classifiers in NLP 51(96)

Parellelization

Issues in Parallelization

◮ What if T is enormous? Can’t even fit it into memory?

◮ Examples:
◮ All pages/images on the web
◮ Query logs of a search engine
◮ All patient records in a health-care system

◮ Can use online algorithms
◮ It may take long to see all interesting examples
◮ All examples may not exist in same location physically

◮ Can we parallelize learning? Yes!

Generalized Linear Classifiers in NLP 52(96)

Parellelization

Parallel Logistic Regression / Gradient Ascent

◮ Core computation for gradient ascent

▽F (w) = (
∂

∂w0
F (w),

∂

∂w1
F (w), . . . ,

∂

∂wm
F (w))

∂

∂wi
F (w) =

∑

t

fi (xt , yt) −
∑

t

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

◮ Note that each (xt , yt) independently contributes to the
calculation

◮ If we have P machines, put |T |/P training instances on each
machine so that T = T1 ∪ T2 ∪ . . . ∪ TP

◮ Compute above values on each machine and send to master

◮ On master machine, sum up gradients and do gradient ascent
update

Generalized Linear Classifiers in NLP 53(96)

Parellelization

Parallel Logistic Regression / Gradient Ascent

◮ Algorithm:
◮ Set w0 = Om

◮ Iterate until convergence
◮ Compute ▽Fp(w

i−1) in parallel on P machines
◮ ▽F (wi−1) =

P

p ▽Fp(w
i−1)

◮ wi = wi−1 + α▽F (wi−1)

◮ Where ▽Fp(w
i−1) is the gradient of the training instances on

machine p, e.g.,

∂

∂wi
Fp(w) =

∑

t∈Tp

fi (xt , yt) −
∑

t∈Tp

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

Generalized Linear Classifiers in NLP 54(96)

Parellelization

Parallelization through Averaging

◮ Again, we have P machines and T = T1 ∪ T2 ∪ . . . ∪ TP

◮ Let wp be the weight vector if we just trained on Tp

◮ Let w = 1
P

∑

p wp

◮ This is called parameter/weight averaging

◮ Advantages: simple and very resource efficient (wrt network
bandwidth – no passing around gradients)

◮ Disadvantages: sub optimal, unlike parallel gradient ascent

◮ Does it work?

Generalized Linear Classifiers in NLP 55(96)

Parellelization

[Mann et al. 2009]

◮ Let w be the weight vector learned using gradient ascent

◮ Let wavg be the weight vector learned by averaging

◮ If algorithm is stable with respect to w, then with high
probability:

‖w − wavg‖ ≤ O(
1

√

|T |
)

◮ I.e., difference shrinks as training data increases

◮ Stable algorithms: Logistic regression, SVMs, others??

◮ Stability is beyond scope of course

◮ See [Mann et al. 2009], which also has experimental study

Generalized Linear Classifiers in NLP 56(96)

Parellelization

Parallel Wrap-up

◮ Many learning algorithms can be parallelized

◮ Logistic Regression and other gradient-based algorithms are
naturally paralleled without any heuristics

◮ Parameter averaging an easy solution that is efficient and
works for all algorithms

◮ Stable algorithms have some optimal bound guarantees

◮ See [Chu et al. 2007] for a nice overview of parallel ML

Generalized Linear Classifiers in NLP 57(96)

Structured Learning

Structured Learning

◮ Sometimes our output space Y is not simply a category

◮ Examples:
◮ Parsing: for a sentence x, Y is the set of possible parse trees
◮ Sequence tagging: for a sentence x, Y is the set of possible

tag sequences, e.g., part-of-speech tags, named-entity tags
◮ Machine translation: for a source sentence x, Y is the set of

possible target language sentences

◮ Can’t we just use our multiclass learning algorithms?

◮ In all the cases, the size of the set Y is exponential in the
length of the input x

◮ It is often non-trivial to run learning algorithms in such cases

Generalized Linear Classifiers in NLP 58(96)

Structured Learning

Hidden Markov Models

◮ Generative Model – maximizes likelihood of P(x, y)

◮ We are looking at discriminative version of these
◮ Not just for sequences, though that will be the running

example

Generalized Linear Classifiers in NLP 59(96)

Structured Learning

Structured Learning

◮ Sometimes our output space Y is not simply a category

◮ Can’t we just use our multiclass learning algorithms?

◮ In all the cases, the size of the set Y is exponential in the
length of the input x

◮ It is often non-trivial to solve our learning algorithms in such
cases

Generalized Linear Classifiers in NLP 60(96)

Structured Learning

Perceptron

Training data: T = {(xt , yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg max

y′ w(i) · f(xt , y
′) (**)

5. if y
′ 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y
′)

7. i = i + 1
8. return wi

(**) Solving the argmax requires a search over an exponential
space of outputs!

Generalized Linear Classifiers in NLP 61(96)

Structured Learning

Large-Margin Classifiers

Batch (SVMs):

min
1

2
||w||2

such that:

w·f(xt ,yt)−w·f(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y
′ ∈ Ȳt (**)

Online (MIRA):

Training data: T = {(xt ,yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T
4. w(i+1) = arg minw*

∥

∥w* − w(i)
∥

∥

such that:
w · f(xt ,yt) − w · f(xt ,y

′) ≥ 1
∀y

′ ∈ Ȳt (**)
5. i = i + 1
6. return wi

(**) There are exponential constraints in the size of each input!!

Generalized Linear Classifiers in NLP 62(96)

Structured Learning

Factor the Feature Representations

◮ We can make an assumption that our feature representations
factor relative to the output

◮ Example:
◮ Context Free Parsing:

f(x,y) =
∑

A→BC∈y

f(x,A → BC)

◮ Sequence Analysis – Markov Assumptions:

f(x,y) =

|y|
∑

i=1

f(x, yi−1, yi)

◮ These kinds of factorizations allow us to run algorithms like
CKY and Viterbi to compute the argmax function

Generalized Linear Classifiers in NLP 63(96)

Structured Learning

Example – Sequence Labeling

◮ Many NLP problems can be cast in this light
◮ Part-of-speech tagging
◮ Named-entity extraction
◮ Semantic role labeling
◮ ...

◮ Input: x = x0x1 . . . xn

◮ Output: y = y0y1 . . . yn

◮ Each yi ∈ Yatom – which is small

◮ Each y ∈ Y = Yn
atom – which is large

◮ Example: part-of-speech tagging – Yatom is set of tags

x = John saw Mary with the telescope
y = noun verb noun preposition article noun

Generalized Linear Classifiers in NLP 64(96)

Structured Learning

Sequence Labeling – Output Interaction

x = John saw Mary with the telescope
y = noun verb noun preposition article noun

◮ Why not just break up sequence into a set of multi-class
predictions?

◮ Because there are interactions between neighbouring tags
◮ What tag does“saw”have?
◮ What if I told you the previous tag was article?
◮ What if it was noun?

Generalized Linear Classifiers in NLP 65(96)

Structured Learning

Sequence Labeling – Markov Factorization

x = John saw Mary with the telescope
y = noun verb noun preposition article noun

◮ Markov factorization – factor by adjacent labels

◮ First-order (like HMMs)

f(x, y) =

|y|
∑

i=1

f(x, yi−1, yi)

◮ kth-order

f(x, y) =

|y|
∑

i=k

f(x, yi−k , . . . , yi−1, yi)

Generalized Linear Classifiers in NLP 66(96)

Structured Learning

Sequence Labeling – Features

x = John saw Mary with the telescope
y = noun verb noun preposition article noun

◮ First-order

f(x, y) =

|y|
∑

i=1

f(x, yi−1, yi)

◮ f(x, yi−1, yi) is any feature of the input & two adjacent labels

fj (x, yi−1, yi) =

8

<

:

1 if xi =“saw”
and yi−1 = noun and yi = verb

0 otherwise
fj′ (x, yi−1, yi) =

8

<

:

1 if xi =“saw”
and yi−1 = article and yi = verb

0 otherwise

◮ wj should get high weight and wj ′ should get low weight

Generalized Linear Classifiers in NLP 67(96)

Structured Learning

Sequence Labeling - Inference

◮ How does factorization effect inference?

y = arg max
y

w · f(x, y)

= arg max
y

w ·

|y|
∑

i=1

f(x, yi−1, yi)

= arg max
y

|y|
∑

i=1

w · f(x, yi−1, yi)

◮ Can use the Viterbi algorithm

Generalized Linear Classifiers in NLP 68(96)

Structured Learning

Sequence Labeling – Viterbi Algorithm

◮ Let αy ,i be the score of the best labeling
◮ Of the sequence x0x1 . . . xi

◮ Where yi = y

◮ Let’s say we know α, then
◮ maxy αy ,n is the score of the best labeling of the sequence

◮ αy ,i can be calculate with the following recursion

αy ,0 = 0.0 ∀y ∈ Yatom

αy ,i = max
y∗

αy∗,i−1 + w · f(x, y∗, y)

Generalized Linear Classifiers in NLP 69(96)

Structured Learning

Sequence Labeling - Back-pointers

◮ But that only tells us what the best score is

◮ Let βy ,i be the i-1st label in the best labeling
◮ Of the sequence x0x1 . . . xi

◮ Where yi = y

◮ βy ,i can be calculate with the following recursion

βy ,0 = nil ∀y ∈ Yatom

βy ,i = arg max
y∗

αy∗,i−1 + w · f(x, y∗, y)

◮ The last label in the best sequence is yn = arg maxy βy ,n

◮ And the second-to-last label is yn−1 arg maxy βyn,n−1 ...

◮ ... y0 = arg maxy βy1,1

Generalized Linear Classifiers in NLP 70(96)

Structured Learning

Structured Learning

◮ We know we can solve the inference problem
◮ At least for sequence labeling
◮ But for many other problems where one can factor features

appropriately

◮ How does this change learning ..
◮ for the perceptron algorithm?
◮ for SVMs?
◮ for Logistic Regression?

Generalized Linear Classifiers in NLP 71(96)

Structured Learning

Structured Perceptron

◮ Exactly like original perceptron

◮ Except now the argmax function uses factored features
◮ Which we can solve with algorithms like the Viterbi algorithm

◮ All of the original analysis carries over!!

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg max

y′ w(i) · f(xt , y
′) (**)

5. if y
′ 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y
′)

7. i = i + 1
8. return wi

(**) Solve the argmax with Viterbi for sequence problems!

Generalized Linear Classifiers in NLP 72(96)

Structured Learning

Structured SVMs

min
1

2
||w||2

such that:

w · f(xt , yt) − w · f(xt , y
′) ≥ L(yt , y

′)

∀(xt , yt) ∈ T and y
′ ∈ Ȳt (**)

◮ Still have an exponential # of constraints
◮ Feature factorizations also allow for solutions

◮ Maximum Margin Markov Networks (Taskar et al. ’03)
◮ Structured SVMs (Tsochantaridis et al. ’04)

◮ Note: Old fixed margin of 1 is now a fixed loss L(yt , y
′)

between two structured outputs

Generalized Linear Classifiers in NLP 73(96)

Structured Learning

Conditional Random Fields

◮ What about a structured logistic regression / maximum
entropy

◮ Such a thing exists – Conditional Random Fields (CRFs)

◮ Let’s again consider the sequential case with 1st order
factorization

◮ Inference is identical to the structured perceptron – use Viterbi

arg max
y

P(y|x) = arg max
y

ew·f(x,y)

Zx

= arg max
y

ew·f(x,y)

= arg max
y

w · f(x, y)

= arg max
y

X

i=1

w · f(x, yi−1, yi)

Generalized Linear Classifiers in NLP 74(96)

Structured Learning

Conditional Random Fields

◮ However, learning does change

◮ Reminder: pick w to maximize log-likelihood of training data:

w = arg max
w

∑

t

log P(yt |xt)

◮ Take gradient and use gradient ascent

∂

∂wi
F (w) =

∑

t

fi (xt , yt) −
∑

t

∑

y′∈Y
P(y′|xt)fi (xt , y

′)

◮ And the gradient is:

▽F (w) = (
∂

∂w0
F (w),

∂

∂w1
F (w), . . . ,

∂

∂wm
F (w))

Generalized Linear Classifiers in NLP 75(96)

Structured Learning

Conditional Random Fields

◮ Problem: sum over output space Y

∂

∂wi
F (w) =

X

t

fi (xt , yt) −
X

t

X

y′∈Y

P(y′|xt)fi (xt , y
′)

=
X

t

X

j=1

fi (xt , yt,j−1, yt,j) −
X

t

X

y′∈Y

X

j=1

P(y′|xt)fi (xt , y
′
j−1, y

′
j)

◮ Can easily calculate first term – just empirical counts

◮ What about the second term?

Generalized Linear Classifiers in NLP 76(96)

Structured Learning

Conditional Random Fields

◮ Problem: sum over output space Y

∑

t

∑

y′∈Y

∑

j=1

P(y′|xt)fi (xt , y
′
j−1, y

′
j)

◮ We need to show we can compute it for arbitrary xt

∑

y′∈Y

∑

j=1

P(y′|xt)fi (xt , y
′
j−1, y

′
j)

◮ Solution: the forward-backward algorithm

Generalized Linear Classifiers in NLP 77(96)

Structured Learning

Forward Algorithm

◮ Let αm
u be the forward scores

◮ Let |xt | = n

◮ αm
u is the sum over all labelings of x0 . . . xm such that y ′

m = u

αm
u =

∑

|y′|=m, y ′
m=u

ew·f(xt ,y
′)

=
∑

|y′|=m y ′
m=u

e
P

j=1 w·f(xt ,yj−1,yj)

◮ i.e., the sum of all labelings of length m, ending at position m

with label u

◮ Note then that

Zxt =
∑

y′

ew·f(xt ,y
′) =

∑

u

αn
u

Generalized Linear Classifiers in NLP 78(96)

Structured Learning

Forward Algorithm

◮ We can fill in α as follows:

α0
u = 1.0 ∀u

αm
u =

∑

v

αm−1
v × ew·f(xt ,v ,u)

Generalized Linear Classifiers in NLP 79(96)

Structured Learning

Backward Algorithm

◮ Let βm
u be the symmetric backward scores

◮ i.e., the sum over all labelings of xm . . . xn such that xm = u

◮ We can fill in β as follows:

βn
u = 1.0 ∀u

βm
u =

∑

v

βm+1
v × ew·f(xt ,u,v)

◮ Note: β is overloaded – different from back-pointers

Generalized Linear Classifiers in NLP 80(96)

Structured Learning

Conditional Random Fields

◮ Let’s show we can compute it for arbitrary xt

∑

y′∈Y

∑

j=1

P(y′|xt)fi (xt , y
′
j−1, y

′
j)

◮ So we can re-write it as:

∑

j=1

αj−1
y ′
j−1

× e
w·f(xt ,y ′

j−1,y
′
j) × βj

yj

Zxt

fi (xt , y
′
j−1, y

′
j)

◮ Forward-backward can calculate partial derivatives efficiently

Generalized Linear Classifiers in NLP 81(96)

Structured Learning

Conditional Random Fields Summary

◮ Inference: Viterbi

◮ Learning: Use the forward-backward algorithm

◮ What about not sequential problems
◮ Context-Free parsing – can use inside-outside algorithm
◮ General problems – message passing & belief propagation

◮ Great tutorial by [Sutton and McCallum 2006]

Generalized Linear Classifiers in NLP 82(96)

Structured Learning

Structured Learning Summary

◮ Can’t use multiclass algorithms – search space too large

◮ Solution: factor representations

◮ Can allow for efficient inference and learning
◮ Showed for sequence learning: Viterbi + forward-backward
◮ But also true for other structures

◮ CFG parsing: CKY + inside-outside
◮ Dependency Parsing: Spanning tree / Eisner algorithm
◮ General graphs: junction-tree and message passing

Generalized Linear Classifiers in NLP 83(96)

Non-Linear Classifiers

◮ End of linear classifiers!!

◮ Brief look at non-linear classification ...

Generalized Linear Classifiers in NLP 84(96)

Non-Linear Classifiers

Non-Linear Classifiers

◮ Some data sets require more than a linear classifier to be
correctly modeled

◮ A lot of models out there
◮ K-Nearest Neighbours (see Walter’s lecture)
◮ Decision Trees
◮ Kernels
◮ Neural Networks

Generalized Linear Classifiers in NLP 85(96)

Non-Linear Classifiers

Kernels

◮ A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

φ(xt , xr) ∈ R

◮ Let M be a n × n matrix such that ...

Mt,r = φ(xt , xr)

◮ ... for any n points. Called the Gram matrix.

◮ Symmetric:
φ(xt , xr) = φ(xr , xt)

◮ Positive definite: for all non-zero v

vMvT ≥ 0

Generalized Linear Classifiers in NLP 86(96)

Non-Linear Classifiers

Kernels

◮ Mercer’s Theorem: for any kernal φ, there exists an f, such
that:

φ(xt , xr) = f(xt) · f(xr)

◮ Since our features are over pairs (x, y), we will write kernels
over pairs

φ((xt , yt), (xr , yr)) = f(xt , yt) · f(xr , yr)

Generalized Linear Classifiers in NLP 87(96)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm
Training data: T = {(xt , yt)}|T |

t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = arg max
y

w(i) · f(xt , y)
5. if y 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y)
7. i = i + 1
8. return wi

◮ Each feature function f(xt , yt) is added and f(xt , y) is
subtracted to w say αy,t times

◮ αy,t is the # of times during learning label y is predicted for
example t

◮ Thus,
w =

∑

t,y

αy,t [f(xt , yt) − f(xt , y)]

Generalized Linear Classifiers in NLP 88(96)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

◮ We can re-write the argmax function as:

y∗ = arg max
y∗

w(i) · f(xt ,y
∗)

= arg max
y∗

∑

t,y

αy,t [f(xt ,yt) − f(xt ,y)] · f(xt ,y
∗)

= arg max
y∗

∑

t,y

αy,t [f(xt ,yt) · f(xt ,y
∗) − f(xt ,y) · f(xt ,y

∗)]

= arg max
y∗

∑

t,y

αy,t [φ((xt ,yt), (xt ,y
∗)) − φ((xt ,y), (xt ,y

∗))]

◮ We can then re-write the perceptron algorithm strictly with
kernels

Generalized Linear Classifiers in NLP 89(96)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt , yt)}|T |
t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y

∗ = arg max
y∗

P

t,y αy,t [φ((xt , yt), (xt , y
∗)) − φ((xt , y), (xt , y

∗))]

5. if y
∗ 6= yt

6. αy∗,t = αy∗,t + 1

◮ Given a new instance x

y
∗ = arg max

y∗

∑

t,y

αy,t [φ((xt , yt), (x, y∗))−φ((xt , y), (x, y∗))]

◮ But it seems like we have just complicated things???

Generalized Linear Classifiers in NLP 90(96)

Non-Linear Classifiers

Kernels = Tractable Non-Linearity

◮ A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

◮ Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

◮ Thus, kernels allow us to efficiently learn non-linear classifiers

Generalized Linear Classifiers in NLP 91(96)

Non-Linear Classifiers

Linear Classifiers in High Dimension

Generalized Linear Classifiers in NLP 92(96)

Non-Linear Classifiers

Example: Polynomial Kernel

◮ f(x) ∈ R
M , d ≥ 2

◮ φ(xt , xs) = (f(xt) · f(xs) + 1)d

◮ O(M) to calculate for any d!!

◮ But in the original feature space (primal space)
◮ Consider d = 2, M = 2, and f(xt) = [xt,1, xt,2]

(f(xt) · f(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)
2 + (xt,2xs,2)

2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)
2, (xt,2)

2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1] · [(xs,1)
2, (xs,2)

2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]

Generalized Linear Classifiers in NLP 93(96)

Non-Linear Classifiers

Popular Kernels

◮ Polynomial kernel

φ(xt , xs) = (f(xt) · f(xs) + 1)d

◮ Gaussian radial basis kernel (infinite feature space
representation!)

φ(xt , xs) = exp(
−||f(xt) − f(xs)||

2

2σ
)

◮ String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

◮ Tree kernels [Collins and Duffy 2002]

Generalized Linear Classifiers in NLP 94(96)

Non-Linear Classifiers

Kernels Summary

◮ Can turn a linear classifier into a non-linear classifier

◮ Kernels project feature space to higher dimensions
◮ Sometimes exponentially larger
◮ Sometimes an infinite space!

◮ Can“kernalize”algorithms to make them non-linear

Generalized Linear Classifiers in NLP 95(96)

Wrap Up

Main Points of Lecture

◮ Feature representations

◮ Choose feature weights, w, to maximize some function (min
error, max margin)

◮ Batch learning (SVMs, Logistic Regression) versus online
learning (perceptron, MIRA, SGD)

◮ The right way to parallelize

◮ Structured Learning

◮ Linear versus Non-linear classifiers

Generalized Linear Classifiers in NLP 96(96)

References and Further Reading

References and Further Reading

◮ A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics, 22(1).

◮ C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun.
2007.
Map-Reduce for machine learning on multicore. In Advances in Neural Information
Processing Systems.

◮ M. Collins and N. Duffy. 2002.
New ranking algorithms for parsing and tagging: Kernels over discrete structures,
and the voted perceptron. In Proc. ACL.

◮ M. Collins. 2002.
Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. EMNLP.

◮ K. Crammer and Y. Singer. 2001.
On the algorithmic implementation of multiclass kernel based vector machines.
JMLR.

◮ K. Crammer and Y. Singer. 2003.
Ultraconservative online algorithms for multiclass problems. JMLR.

◮ K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003.

Generalized Linear Classifiers in NLP 96(96)

References and Further Reading

Online passive aggressive algorithms. In Proc. NIPS.

◮ K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
Online passive aggressive algorithms. JMLR.

◮ Y. Freund and R.E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Machine Learning,
37(3):277–296.

◮ T. Joachims. 2002.
Learning to Classify Text using Support Vector Machines. Kluwer.

◮ J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

◮ H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
Classification with string kernels. Journal of Machine Learning Research.

◮ G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009.
Efficient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems.

◮ A. McCallum, D. Freitag, and F. Pereira. 2000.
Maximum entropy Markov models for information extraction and segmentation. In
Proc. ICML.

Generalized Linear Classifiers in NLP 96(96)

References and Further Reading

◮ R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency parsers. In Proc. ACL.

◮ K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001.
An introduction to kernel-based learning algorithms. IEEE Neural Networks,
12(2):181–201.

◮ F. Sha and F. Pereira. 2003.
Shallow parsing with conditional random fields. In Proc. HLT/NAACL, pages
213–220.

◮ C. Sutton and A. McCallum. 2006.
An introduction to conditional random fields for relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.

◮ B. Taskar, C. Guestrin, and D. Koller. 2003.
Max-margin Markov networks. In Proc. NIPS.

◮ B. Taskar. 2004.
Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,
Stanford.

◮ I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004.
Support vector learning for interdependent and structured output spaces. In Proc.
ICML.

◮ T. Zhang. 2004.

Generalized Linear Classifiers in NLP 96(96)

References and Further Reading

Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine
learning.

Generalized Linear Classifiers in NLP 96(96)

	introduction
	Preliminaries
	Linear Classifiers
	Parellelization
	Structured Learning
	Non-Linear Classifiers
	Wrap Up
	Appendix
	References and Further Reading

