
Introduction

to

Data-Driven Dependency Parsing
Venue: European Summer School in Logic Language and Information 2007

Instructors:

• Ryan McDonald, Google Inc. (ryanmcd@google.com)

• Joakim Nivre, Växjö University and Uppsala University (nivre@msi.vxu.edu)

Webpage: http://dp.esslli07.googlepages.com/

Desription: Syntactic dependency representations of sentences have a long
history in theoretical linguistics. Recently, they have found renewed interest
in the computational parsing community due to their efficient computational
properties and their ability to naturally model non-nested constructions, which
is important in freer-word order languages such as Czech, Dutch, and German.
This interest has led to a rapid growth in multilingual data sets and new pars-
ing techniques. One modern approach to building dependency parsers, called
data-driven dependency parsing, is to learn good and bad parsing decisions
solely from labeled data, without the intervention of an underlying grammar.
This course will cover: Dependency parsing (history, definitions, motivation,
etc.), grammar-driven versus data-driven parsing, brief introduction to learn-
ing frameworks, transition-based parsing algorithms, graph-based parsing al-
gorithms, other algorithms, empirical results and applications, and available
software.

This reader contains four papers that form the basis of the course:

• Nivre, J. (2005) Dependency Grammar and Dependency Parsing. MSI report
05133. Vxj University: School of Mathematics and Systems Engineerin

• Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov,
S. and Marsi, E. (2007) MaltParser: A language-independent system for data-
driven dependency parsing. Natural Language Engineering, 13(2), 95-135.

• McDonald, R., Pereira, F., Crammer, K., and Lerman, K. (2007) Global Infer-
ence and Learning Algorithms for Multi-Lingual Dependency Parsing. Unpub-
lished manuscript.

• McDonald, R., and Nivre, J. (2007) Characterizing the Errors of Data-Driven

Dependency Parsing Models. Proceedings of the Conference on Empirical Meth-

ods in Natural Language Processing and Natural Language Learning.

This reader is to serve as a reference guide for participants. Lecture slides will
be available on the official course webpage.

Dependency Grammar and Dependency Parsing

Joakim Nivre

1 Introduction

Despite a long and venerable tradition in descriptive linguistics, dependency gram-
mar has until recently played a fairly marginal role both in theoretical linguistics
and in natural language processing. The increasing interest in dependency-based
representations in natural language parsing in recent years appears to be motivated
both by the potential usefulness of bilexical relations in disambiguation and by the
gains in efficiency that result from the more constrained parsing problem for these
representations.

In this paper, we will review the state of the art in dependency-based parsing,
starting with the theoretical foundations of dependency grammar and moving on
to consider both grammar-driven and data-driven methods for dependency parsing.
We will limit our attention to systems for dependency parsing in a narrow sense,
i.e. systems where the analysis assigned to an input sentence takes the form of a
dependency structure. This means that we will not discuss systems that exploit
dependency relations for the construction of another type of representation, such
as the head-driven parsing models of Collins (1997, 1999). Moreover, we will
restrict ourselves to systems for full parsing, which meansthat we will not deal
with systems that produce a partial or underspecified representation of dependency
structure, such as Constraint Grammar parsers (Karlsson, 1990; Karlsson et al.,
1995).

2 Dependency Grammar

Although its roots may be traced back to Pān.ini’s grammar of Sanskrit several cen-
turies before the Common Era (Kruijff, 2002) and to medievaltheories of grammar
(Covington, 1984), dependency grammar has largely developed as a form for syn-
tactic representation used by traditional grammarians, especially in Europe, and
particularly in Classical and Slavic domains (Mel’čuk, 1988). This grammatical
tradition can be said to culminate with the seminal work of Tesnìere (1959), which

1

JJ

Economic

��

NN

news

HH

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

�
�

�
�

�
VP

S

JJ

little

��

NN

effect

HH

"
"

"
"

"

HH

NP

NP

IN

on

�
�

�

HH

PP

JJ

financial

��

NNS

markets

HH

HH

NP PU

.

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Figure 1: Constituent structure for English sentence from the Penn Treebank

JJ
Economic

� �

?

NMOD

NN
news

� �

?

SBJ

VBD
had

JJ
little

� �

?

NMOD

NN
effect

� �

?

OBJ

IN
on

� �

?

NMOD

JJ
financial

� �

?

NMOD

NNS
markets

� �

?

PMOD

PU
.

?

� �

P

Figure 2: Dependency structure for English sentence from the Penn Treebank

is usually taken as the starting point of the modern theoretical tradition of depen-
dency grammar.

This tradition comprises a large and fairly diverse family of grammatical theo-
ries and formalisms that share certain basic assumptions about syntactic structure,
in particular the assumption that syntactic structure consists of lexical elements
linked by binary asymmetrical relations calleddependencies. Thus, the common
formal property of dependency structures, as compared to representations based on
constituency is the lack of phrasal nodes. This can be seen bycomparing the con-
stituency representation of an English sentence in Figure 1, taken from the Wall
Street Journal section of the Penn Treebank (Marcus et al., 1993, 1994), to the
corresponding dependency representation in Figure 2.

Among the more well-known theories of dependency grammar, besides the
theory of structural syntax developed by Tesnière (1959), we find Word Gram-

2

mar (WG) (Hudson, 1984, 1990), Functional Generative Description (FGD) (Sgall
et al., 1986), Dependency Unification Grammar (DUG) (Hellwig, 1986, 2003),
Meaning-Text Theory (MTT) (Mel’̌cuk, 1988), and Lexicase (Starosta, 1988). In
addition, constraint-based theories of dependency grammar have a strong tradition,
represented by Constraint Dependency Grammar (CDG) (Maruyama, 1990; Harper
and Helzerman, 1995; Menzel and Schröder, 1998) and its descendant Weighted
Constraint Dependency Grammar (WCDG) (Schröder, 2002), Functional Depen-
dency Grammar (FDG) (Tapanainen and Järvinen, 1997; J̈arvinen and Tapanainen,
1998), largely developed from Constraint Grammar (CG) (Karlsson, 1990; Karls-
son et al., 1995), and finally Topological Dependency Grammar (TDG) (Duchier
and Debusmann, 2001), subsequently evolved into Extensible Dependency Gram-
mar (XDG) (Debusmann et al., 2004). A synthesis of dependency grammar and
categorial grammar is found in the framework of Dependency Grammar Logic
(DGL) (Kruijff, 2001).

We will make no attempt at reviewing all these theories here.Instead, we will
try to characterize their common core of assumptions, centered upon the notion of
dependency, and discuss major points of divergence, such asthe issue of projective
versus non-projective representations.

2.1 The Notion of Dependency

The fundamental notion ofdependencyis based on the idea that the syntactic struc-
ture of a sentence consists of binary asymmetrical relations between the words of
the sentence. The idea is expressed in the following way in the opening chapters
of Tesnìere (1959):

La phrase est unensemble organisédont leśeléments constituants sont
les mots. [1.2] Tout mot qui fait partie d’une phrase cesse par lui-
même d’̂etre isoĺe comme dans le dictionnaire. Entre lui et ses voisins,
l’esprit aperçoit desconnexions, dont l’ensemble forme la charpente
de la phrase. [1.3] Les connexions structuralesétablissent entre les
mots des rapports dedépendance. Chaque connexion unit en principe
un termesuṕerieur à un termeinférieur. [2.1] Le terme suṕerieur
reçoit le nom derégissant. Le terme inf́erieur reçoit le nom desubor-
donńe. Ainsi dans la phraseAlfred parle [. . .], parle est le ŕegissant
etAlfred le subordonńe. [2.2] (Tesnìere, 1959, 11–13, emphasis in the
original)1

1English translation (by the author): ‘The sentence is anorganized whole, the constituent ele-
ments of which arewords. [1.2] Every word that belongs to a sentence ceases by itselfto be isolated
as in the dictionary. Between the word and its neighbors, themind perceivesconnections, the totality

3

In the terminology used in this paper, a dependency relationholds between ahead
and adependent. Alternative terms in the literature aregovernorand regentfor
head(cf. Tesnìere’s régissant) andmodifier for dependent(cf. Tesnìere’ssubor-
donńe).

Criteria for establishing dependency relations, and for distinguishing the head
and the dependent in such relations, are clearly of central importance for depen-
dency grammar. Such criteria have been discussed not only inthe dependency
grammar tradition, but also within other frameworks where the notion of syntac-
tic head plays an important role, including all constituency-based frameworks that
subscribe to some version ofX theory (Chomsky, 1970; Jackendoff, 1977). Here
are some of the criteria that have been proposed for identifying a syntactic relation
between a headH and a dependentD in a constructionC (Zwicky, 1985; Hudson,
1990):

1. H determines the syntactic category ofC and can often replaceC.

2. H determines the semantic category ofC; D gives semantic specification.

3. H is obligatory;D may be optional.

4. H selectsD and determines whetherD is obligatory or optional.

5. The form ofD depends onH (agreement or government).

6. The linear position ofD is specified with reference toH.

It is clear that this list contains a mix of different criteria, some syntactic and
some semantic, and one may ask whether there is a single coherent notion of
dependency corresponding to all the different criteria. This has led some theo-
rists, such as Hudson (1990), to suggest that the concept of head has a prototype
structure, i.e. that typical instances of this category satisfy all or most of the criteria
while more peripheral instances satisfy fewer. Other authors have emphasized the
need to distinguish different kinds of dependency relations. According to Mel’̌cuk
(1988), the word forms of a sentence can be linked by three types of dependencies:
morphological, syntacticandsemantic. According to Nikula (1986), we must dis-
tinguish between syntactic dependency inendocentricandexocentricconstructions
(Bloomfield, 1933).

of which forms the structure of the sentence. [1.3] The structural connections establishdependency
relations between the words. Each connection in principle unites asuperior term and aninferior
term. [2.1] The superior term receives the namegovernor. The inferior term receives the namesub-
ordinate. Thus, in the sentenceAlfred parle[. . .], parle is the governor andAlfred the subordinate.
[2.2]’

4

Thus, in Figure 2, theNMOD relation holding between the nounmarketsand
the adjectivefinancial is an endocentric construction, where the head can replace
the whole without disrupting the syntactic structure:

Economic news had little effect on [financial] markets. (1)

Endocentric constructions may satisfy all the criteria listed above, although number
4 is usually considered less relevant, since dependents in endocentric constructions
are taken to be optional and not selected by their heads. By contrast, thePMOD

relation holding between the prepositionon and the nounmarketsis an exocentric
construction, where the head cannot readily replace the whole:

Economic news had little effect on [markets]. (2)

Exocentric constructions, by their definition, fail on criterion number 1, at least
with respect to subsitutability of the head for the whole, but they may satisfy the
remaining criteria. Considering the rest of the relations exemplified in Figure 2, the
SBJandOBJ relations are clearly exocentric, and theNMOD relation from the noun
newsto the adjectiveEconomicclearly endocentric, while the remainingNMOD

relations (effect→ little, effect→ on) have a more unclear status.
The distinction between endocentric and exocentric constructions is also re-

lated to the distinction betweenhead-complementand head-modifier(or head-
adjunct) relations found in many contemporary syntactic theories,since head-
complement relations are exocentric while head-modifier relations are endocentric.
Many theories also recognize a third kind of relation, thehead-specifierrelation,
typically exemplified by the determiner-noun relation, which is exocentric like the
head-complement relation, but where there is no clear selection of the dependent
element by the head.

The distinction between complements and modifiers is often defined in terms
of valency, which is a central notion in the theoretical tradition of dependency
grammar. Although the exact characterization of this notion differs from one theo-
retical framework to the other, valency is usually related to the semantic predicate-
argument structure associated with certain classes of lexemes, in particular verbs
but sometimes also nouns and adjectives. The idea is that theverb imposes re-
quirements on its syntactic dependents that reflect its interpretation as a semantic
predicate. Dependents that correspond to arguments of the predicate can be oblig-
atory or optional in surface syntax but can only occur once with each predicate
instance. By contrast, dependents that do not correspond toarguments can have
more than one occurrence with a single predicate instance and tend to be optional.
Thevalency frameof the verb is normally taken to include argument dependents,
but some theories also allow obligatory non-arguments to beincluded (Sgall et al.,
1986).

5

The notion of valency will not play a central role in the present paper, but we
will sometimes use the termsvalency-boundandvalency-freeto make a rough dis-
tinction between dependents that are more or less closely related to the semantic
interpretation of the head. Returning to Figure 2, the subject and the object would
normally be treated as valency-bound dependents of the verbhad, while the adjec-
tival modifiers of the nounsnewsandmarketswould be considered valency-free.
The prepositional modification of the nouneffectmay or may not be treated as
valency-bound, depending on whether the entity undergoingthe effect is supposed
to be an argument of the nouneffector not.

While head-complement and head-modifier structures have a fairly straight-
forward analysis in dependency grammar, there are also manyconstructions that
have a relatively unclear status. This group includes constructions that involve
grammatical function words, such as articles, complementizers and auxiliary verbs,
but also structures involving prepositional phrases. For these constructions, there
is no general consensus in the tradition of dependency grammar as to whether they
should be analyzed as head-dependent relations at all and, if so, what should be
regarded as the head and what should be regarded as the dependent. For example,
some theories regard auxiliary verbs as heads taking lexical verbs as dependents;
other theories make the opposite assumption; and yet other theories assume that
verb chains are connected by relations that are not dependencies in the usual sense.

Another kind of construction that is problematic for dependency grammar (as
for most theoretical traditions) iscoordination. According to Bloomfield (1933),
coordination is an endocentric construction, since it contains not only one but sev-
eral heads that can replace the whole construction syntactically. However, this
characterization raises the question of whether coordination can be analyzed in
terms of binary asymmetrical relations holding between a head and a dependent.
Again, this question has been answered in different ways by different theories
within the dependency grammar tradition.

In conclusion, the theoretical tradition of dependency grammar is united by the
assumption that an essential part of the syntactic structure of sentences resides in
binary asymmetrical relations holding between lexical elements. Moreover, there
is a core of syntactic constructions for which the analysis given by different frame-
works agree in all important respects. However, there are also important differ-
ences with respect to whether dependency analysis is assumed to exhaust syntactic
analysis, and with respect to the analysis of certain types of syntactic construc-
tions. We will now turn to a discussion of some of the more important points of
divergence in this tradition.

6

2.2 Varieties of Dependency Grammar

Perhaps the most fundamental open question in the traditionof dependency gram-
mar is whether the notion of dependency is assumed to be not only necessarybut
alsosufficientfor the analysis of syntactic structure in natural language. This as-
sumption is not made in the theory of Tesnière (1959), which is based on the three
complementary concepts ofconnection(connexion),junction(jonction) andtrans-
fer (translation), where connection corresponds to dependency (cf. the quotation on
page 3) but where junction and transfer are other kinds of relations that can hold
between the words of a sentence. More precisely, junction isthe relation that holds
between coordinated items that are dependents of the same head or heads of the
same dependent, while transfer is the relation that holds between a function word
or other element that changes the syntactic category of a lexical element so that it
can enter into different dependency relations. An example of the latter is the rela-
tion holding between the prepositiondeandPierre in the constructionle livre de
Pierre (Pierre’s book), where the prepositiondeallows the proper namePierre to
modify a noun, a dependency relation otherwise reserved foradjectives. Another
way in which theories may depart from a pure dependency analysis is to allow a
restricted form of constituency analysis, so that dependencies can hold between
strings of words rather than single words. This possibilityis exploited, to different
degrees, in the frameworks of Hellwig (1986, 2003), Mel’čuk (1988) and Hudson
(1990), notably in connection with coordination.

A second dividing line is that between mono-stratal and multi-stratal frame-
works, i.e. between theories that rely on a single syntacticrepresentation and theo-
ries that posit several layers of representation. In fact, most theories of dependency
grammar, in contrast to frameworks for dependency parsing that will be discussed
in Section 3, are multi-stratal, at least if semantic representations are considered to
be a stratum of the theory. Thus, in FGD (Sgall et al., 1986) there is both anana-
lytical layer, which can be characterized as a surface syntactic representation, and
a tectogrammaticallayer, which can be regarded as a deep syntactic (or shallow
semantic) representation. In a similar fashion, MTT (Mel’čuk, 1988) recognizes
bothsurface syntacticanddeep syntacticrepresentations (in addition to represen-
tations of deep phonetics, surface morphology, deep morphology and semantics).
By contrast, Tesnière (1959) uses a single level of syntactic representation,the so-
calledstemma, which on the other hand includes junction and transfer in addition
to syntactic connection.2 The framework of XDG (Debusmann et al., 2004) can be
seen as a compromise in that it allows multiple layers of dependency-based linguis-
tic representations but requires that all layers, ordimensionsas they are called in

2Tesnìere’s representations also includeanaphors, which are described as supplementary seman-
tic connections without corresponding syntactic connections.

7

XDG, share the same set of nodes. This is in contrast to theories like FGD, where
e.g. function words are present in the analytical layer but not in the tectogrammat-
ical layer.

The different requirements of XDG and FGD point to another issue, namely
what can constitute a node in a dependency structure. Although most theories
agree that dependency relations hold betweenlexicalelements, rather thanphrases,
they can make different assumptions about the nature of these elements. The most
straightforward view is that the nodes of the dependency structure are simply the
word forms occurring in the sentence, which is the view adopted in most parsing
systems based on dependency grammar. But it is also possibleto construct depen-
dency structures involving more abstract entities, such aslemmas or lexemes, es-
pecially in deeper syntactic representations. Another variation is that the elements
may involve several word forms, constituting adissociate nucleus(nucĺeus dis-
socíe) in the terminology of Tesnière (1959), or alternatively correspond to smaller
units than word forms, as in the morphological dependenciesof Mel’ čuk (1988).

A fourth dimension of variation concerns the inventory of specific dependency
types posited by different theories, i.e. functional categories like SBJ, OBJ and
NMOD that are used to label dependency arcs in the representationin Figure 2.
Broadly speaking, most theories either assume a set of more surface-oriented gram-
matical functions, such assubject, object, adverbial, etc., with a more or less elab-
orate subclassification, or a set of more semantically oriented role types, such as
agent, patient, goal, etc., belonging to the tradition ofcase rolesor thematic roles
(Fillmore, 1968; Jackendoff, 1972; Dowty, 1989).3 Multi-stratal theories often
combine the two relation types. Thus, FGD (Sgall et al., 1986) uses grammatical
functions in the analytical layer and semantic roles in the tectogrammatical layer.
An alternative scheme of representation, which is found in MTT (Mel’ čuk, 1988),
is to use numerical indices for valency-bound dependents toreflect a canonical
ordering of arguments (argument 1, 2, 3, etc.) and to use descriptive labels only
for valency-free dependents. Finally, it is also possible to use unlabeled depen-
dency structures, although this is more common in practicalparsing systems than
in linguistic theories.

There are several open issues in dependency grammar that have to do with
formal properties of representations. Since a dependency representation consists
of lexical elements linked by binary asymmetrical relations, it can be defined as
a labeled directed graph, where the set of nodes (or vertices) is the set of lexi-
cal elements (as defined by the particular framework), and the set of labeled arcs

3The notion of a semantic role can be traced back to Pān. ini’s kānakatheory (Misra, 1966), which
is sometimes also seen as the earliest manifestation of dependency grammar. The notion of a gram-
matical function also has a long history that extends at least to the work of Appolonius Dyscolus in
the second century of the Common Era (Robins, 1967).

8

represent dependency relations from heads to dependents. In order to provide a
complete syntactic analysis of a sentence, the graph must also beconnectedso that
every node is related to at least one other node (Mel’čuk, 1988). Again, we refer
to Figure 2 as an illustration of this representation, wherethe nodes are the word
tokens of the sentence (annotated with parts-of-speech) and the arcs are labeled
with grammatical functions.4

Given this general characterization, we may then impose various additional
conditions on these graphs. Two basic constraints that are assumed in most ver-
sions of dependency grammar are thesingle-headconstraint, i.e. the assumption
that each node has at most one head, and theacyclicityconstraint, i.e. the assump-
tion that the graph should not contain cycles. These two constraints, together with
connectedness, imply that the graph should be a rooted tree,with a single root node
that is not a dependent of any other node. For example, the representation in Fig-
ure 2 is a rooted tree with the verbhadas the root node. Although these constraints
are assumed in most versions of dependency grammar, there are also frameworks
that allow multiple heads as well as cyclic graphs, such as WG(Hudson, 1984,
1990). Another issue that arises for multi-stratal theories is whether each level of
representation has its own set of nodes, as in most theories,or whether they only
define different arc sets on top of the same set of nodes, as in XDG (Debusmann
et al., 2004).

However, the most important and hotly debated issues concerning formal rep-
resentations have to do with the relation between dependency structure and word
order. According to Tesnière (1959), dependency relations belong to thestructural
order (l’ordre structural), which is different from thelinear order(l’ordre linéaire)
of a spoken or written string of words, andstructural syntaxis based on the re-
lations that exist between these two dimensions. Most versions of dependency
grammar follow Tesnìere in assuming that the nodes of a dependency structure are
not linearly ordered in themselves but only in relation to a particular surface real-
ization of this structure. A notable exception to this generalization is FGD, where
the representations of both the analytical layer and the tectogrammatical layer are
linearly ordered in order to capture aspects of informationstructure (Sgall et al.,
1986). In addition, there are frameworks, such as TDG (Duchier and Debusmann,
2001), where the linear order is represented by means of a linearly ordered de-
pendency structure, the Linear Precedence (LP) tree, whilethe proper dependency
representation, the Immediate Dominance (ID) tree, is unordered.

4There seems to be no general consensus in the literature on dependency grammar as to whether
the arcs representing dependency relations should be drawnpointing from heads to dependents or
vice versa (or indeed with arrowheads at all). We have chosento adopt the former alternative, both
because it seems to be the most common representation in the literature and because it is consistent
with standard practice in graph theory.

9

However, whether dependency relations introduce a linear ordering or not,
there may be constraints relating dependency structures tolinear realizations. The
most well-known example is the constraint ofprojectivity, first discussed by Lecerf
(1960), Hays (1964) and Marcus (1965), which is related to the contiguity con-
straint for constituent representations. A dependency graph satisfies the constraint
of projectivity with respect to a particular linear order ofthe nodes if, for every
arch → d and nodew, w occurs betweenh andd in the linear order only ifw
is dominated byh (wheredominatesis the reflexive and transitive closure of the
arc relation). For example, the representation in Figure 2 is an example of apro-
jectivedependency graph, given the linear order imposed by the wordorder of the
sentence.

The distinction betweenprojectiveand non-projectivedependency grammar
often made in the literature thus refers to the issue of whether this constraint is
assumed or not. Broadly speaking, we can say that whereas most practical sys-
tems for dependency parsing do assume projectivity, most dependency-based lin-
guistic theories do not. More precisely, most theoretical formulations of depen-
dency grammar regard projectivity as the norm but also recognize the need for non-
projective representations of certain linguistic constructions, e.g. long-distance de-
pendencies (Mel’̌cuk, 1988; Hudson, 1990). It is also often assumed that the con-
straint of projectivity is too rigid for the description of languages with free or flex-
ible word order.

Some multi-stratal theories allow non-projective representations in some layers
but not in others. For example, FGD assumes that tectogrammatical representations
are projective while analytical representations are not (Sgall et al., 1986). Similarly,
TDG (Duchier and Debusmann, 2001) assume projectivity for LP trees but not for
ID trees. Sometimes a weaker condition calledplanarity is assumed, which allows
a nodew to occur between a headh and a dependentd without being dominated by
h only if w is a root (Sleator and Temperley, 1993).5 Further relaxations of these
constraints are discussed in Kahane et al. (1998) and Yli-Jyrä (2003).

The points of divergence considered up till now have all beenconcerned with
aspects of representation. However, as mentioned at the endof the previous sec-
tion, there are also a number of points concerning the substantive linguistic analysis
where different frameworks of dependency grammar make different assumptions,
in the same way as theories differ also within other traditions. We will limit our-
selves to a brief discussion of two such points.

The first point concerns the issue ofsyntacticversussemanticheads. As noted
in Section 2.1, the criteria for identifying heads and dependents invoke both syn-

5This constraint is related to but not equivalent to the standard notion of planarity in graph theory
(see, e.g., Grimaldi, 2004).

10

tactic and semantic properties. In many cases, these criteria give the same result,
but in others they diverge. A typical example is found in so-called case marking
prepositions, exemplified in the following sentence:

I believe in the system. (3)

According to syntactic criteria, it is natural to treat the prepositionin as a depen-
dent of the verbbelieveand as the head of the nounsystem. According to semantic
criteria, it is more natural to regardsystemas a direct dependent ofbelieveand to
treat in as a dependent ofsystem(corresponding to a case marking affix in some
other languages).6 Most versions of dependency grammar treat the preposition as
the head of the noun, but there are also theories that make theopposite assump-
tion. Similar considerations apply to many constructions involving one function
word and one content word, such as determiner-noun and complementizer-verb
constructions. An elegant solution to this problem is provided by the theory of
Tesnìere (1959), according to which the function word and the content word form
a dissociate nucleus(nucĺeus dissocíe), united by a relation oftransfer (transla-
tion). In multi-stratal theories, it is possible to treat the function word as the head
only in more surface-oriented layers. For example, to return to example (3), FGD
would assume that the preposition takes the noun as a dependent in the analytical
layer, but in the tectogrammatical layer the preposition would be absent and the
noun would instead depend directly on the verb.

The second point concerns the analysis of coordination, which presents prob-
lems for any syntactic theory but which seems to be especially hard to reconcile
with the idea that syntactic constructions should be analyzed in terms of binary
head-dependent relations. Consider the following example:

They operate ships and banks. (4)

It seems clear that the phraseships and banksfunctions as a direct object of the
verboperate, but it is not immediately clear how this phrase can be given an inter-
nal analysis that is compatible with the basic assumptions of dependency analysis,
since the two nounsshipsandbanksseem to be equally good candidates for being
heads. One alternative is to treat the conjunction as the head, as shown in Figure 3
(top), an analysis that may be motivated on semantic grounds and is adopted in
FGD. Another alternative, advocated by Mel’čuk (1988), is to treat the conjunction
as the head only of the second conjunct and analyze the conjunction as a dependent
of the first conjunct, as shown in Figure 3 (bottom). The arguments for this anal-
ysis are essentially the same as the arguments for an asymmetric right-branching

6A third alternative is to treat bothin andsystemas dependents ofbelieve, since it is the verb that
selects the preposition and takes the noun as an argument.

11

PRP
They

� �

?

SBJ

VBP
operate

NNS
ships

� �

?

OBJ

CC
and

� �

?

CO

NNS
banks

� �

?

CJ

PU
.

?

� �

P

PRP
They

� �

?

SBJ

VBP
operate

NNS
ships

� �

?

OBJ

CC
and

� �

?

CJ

NNS
banks

� �

?

CJ

PU
.

?

� �

P

Figure 3: Two analyses of coordination

analysis in constituency-based frameworks. A third optionis to give up a pure
dependency analysis and allow a limited form of phrase structure, as in WG (Hud-
son, 1990). A fourth and final variant is the analysis of Tesnière (1959), according
to which bothshipsandbanksare dependents of the verb, while the conjunction
marks a relation ofjunction(jonction) between the two nouns.

3 Parsing with Dependency Representations

So far, we have reviewed the theoretical tradition of dependency grammar, focusing
on the common core of assumptions as well as major points of divergence, rather
than on individual instantiations of this tradition. We will now turn to what is the
main topic of this paper, namely the computational implementation of syntactic
analysis based on dependency representations, i.e. representations involving lexical
nodes, connected by dependency arcs, possibly labeled withdependency types.

Such implementations may be intimately tied to the development of a particular
theory, such as the PLAIN system based on DUG (Hellwig, 1980,2003) or the
FDG parsing system (Tapanainen and Järvinen, 1997; J̈arvinen and Tapanainen,
1998). On the whole, however, the connections between theoretical frameworks
and computational systems are often rather indirect for dependency-based analysis,
probably more so than for theories and parsers based on constituency analysis. This
may be due to the relatively lower degree of formalization ofdependency grammar
theories in general, and this is also part of the reason why the topic of this section

12

is described as parsing with dependencyrepresentations, rather than parsing with
dependencygrammar.

In discussing dependency-based systems for syntactic parsing, we will follow
Carroll (2000) and distinguish two broad types of strategy,the grammar-driven
approachand thedata-driven approach, although these approaches are not mutu-
ally exclusive. We will conclude the paper with a brief discussion of some of the
potential advantages of using dependency representationsin syntactic parsing.

3.1 Grammar-Driven Dependency Parsing

The earliest work on parsing with dependency representations was intimately tied
to formalizations of dependency grammar that were very close to context-free
grammar, such as the proposals of Hays (1964) and Gaifman (1965). In the formu-
lation of Gaifman (1965) adependency systemcontains three sets of rules:7

1. LI: Rules of the formX(Y1 · · ·Yi ∗ Yi+1 · · ·Yn), wherei may equal 0 and/or
n, which say that the categoryX may occur with categoriesY1, . . . , Yn as
dependents, in the order given (withX in position∗).

2. LII: Rules giving for every categoryX the list of words belonging to it
(where each word may belong to more than one category).

3. LIII: A rule giving the list of all categories the occurrence of which may
govern a sentence.

A sentence consisting of wordsw1, . . ., wn is analyzed by assigning to it a sequence
of categoriesX1, . . ., Xn and a relation of dependencyd between words such that
the following conditions hold (whered∗ is the transitive closure ofd):

1. For nowi, d∗(wi, wi).

2. For everywi, there is at most onewj such thatd(wi, wj).

3. If d∗(wi, wj) andwk is betweenwi andwj , thend∗(wk, wj).

4. The whole set of word occurrences is connected byd.

5. If w1, . . . , wi are left dependents andwi+1, . . . , wn right dependents of some
word, andX1, . . . , Xi, Xi+1, . . . , Xn are the categories ofw1, . . . , wi, wi+1,
. . . , wn, thenX(X1 · · ·Xi ∗ Xi+1 · · ·Xn) is a rule ofLI.

6. The word occurrencewi that governs the sentence belongs to a category
listed inLIII.

7The formulation of Hays (1964) is slightly different but equivalent in all respects.

13

Gaifman remarks that 1–4 are general structure requirements that can be made on
any relation defined on a finite linearly ordered set whether it is a set of categories
or not, while 5–6 are requirements which relate the relationto the specific gram-
mar given by the three sets of rulesLI–LIII. Referring back to the discussion of
graph conditions in Section 2.2, we may first of all note that Gaifman defines de-
pendency relations to hold from dependent to head, rather than the other way round
which is more common in the recent literature. Secondly, we see that condition 2
corresponds to thesingle-headconstraint and condition 3 to theprojectivitycon-
straint. Conditions 1, 2 and 4 jointly entail that the graph is a rooted tree, which
is presupposed in condition 6. Finally, it should be pointedout that this kind of
dependency system only gives an unlabeled dependency analysis, since there are
no dependency types used to label dependency relations.

Gaifman (1965) proves several equivalence results relating his dependency sys-
tems to context-free grammars. In particular, he shows thatthe two systems are
weakly equivalent, i.e. that they both characterize the class of context-free lan-
guages. However, he also shows that whereas any dependency system can be con-
verted to a strongly equivalent context-free grammar (modulo a specific mapping
between dependency trees and context-free parse trees), the inverse construction is
only possible for a restricted subset of context-free grammar (roughly grammars
where all productions are lexicalized).

These results have been invoked to explain the relative lackof interest in depen-
dency grammar within natural language processing for the subsequent twenty-five
years or so, based on the erroneous conclusion that dependency grammar is only a
restricted variant of context-free grammar (Järvinen and Tapanainen, 1998).8 This
conclusion is erroneous simply because the results only concern the specific ver-
sion of dependency grammar formalized by Hays and Gaifman, which for one
thing is restricted to projective dependency structures. However, it also worth em-
phasizing that with the increasing importance of problems like robustness and dis-
ambiguation, issues of (limited) generative capacity havelost some of their signifi-
cance in the context of natural language parsing. Nevertheless, it seems largely true
to say that, except for isolated studies of dependency grammar as an alternative to
context-free grammar as the basis for transformational grammar (Robinson, 1970),
dependency grammar has played a marginal role both in syntactic theory and in
natural language parsing until fairly recently.

The close relation to context-free grammar in the formalization of dependency
grammar by Hays and Gaifman means that essentially the same parsing methods

8A similar development seems to have taken place with respectto categorial grammar after the
weak equivalence of a restricted type of categorial grammarwith context-free grammar was proven
by Bar-Hillel et al. (1960).

14

can be used for both types of system. Hence, the parsing algorithm outlined in Hays
(1964) is a bottom-up dynamic programming algorithm very similar to the CKY
algorithm proposed for context-free parsing at about the same time (Kasami, 1965;
Younger, 1967). The use of dynamic programming algorithms that are closely
connected to context-free parsing algorithms such as CKY and Earley’s algorithm
(Earley, 1970) is a prominent trend also in more recent grammar-driven approaches
to dependency parsing. One example is the link grammar parser of Sleator and
Temperley (1991, 1993), which uses a dynamic programming algorithm imple-
mented as a top-down recursive algorithm with memoization to achieve parsing in
O(n3) time. Link grammar is not considered an instance of dependency grammar
by its creators, and it departs from the traditional view of dependency by using
undirected links, but the representations used in link grammar parsing are similar
to dependency representations in that they consist of wordslinked by binary rela-
tions. Other examples include a modification of the CKY algorithm (Holan et al.,
1997) and an Earley-type algorithm with left-corner filtering in the prediction step
(Lombardo and Lesmo, 1996; Barbero et al., 1998).

A common property of all frameworks that implement dependency parsing as a
form of lexicalized context-free parsing is that they are restricted to the derivation
of projective dependency structures, although some of the frameworks allow post-
processing that may introduce non-projective structures (Sleator and Temperley,
1991, 1993). Many of these frameworks can be subsumed under the notion of
bilexical grammarintroduced by Eisner (2000). In Eisner’s formulation, a bilexical
grammar consists of two elements:

1. A vocabularyV of terminal symbols (words), containing a distinguished
symbolROOT.

2. For each wordw ∈ V , a pair of deterministic finite-state automatalw and
rw. Each automaton accepts some regular subset ofV ∗.

The languageL(G) defined by a bilexical dependency grammarG is defined as
follows:

1. A dependency treeis a rooted tree whose nodes are labeled with words from
V , and where the root node is labeled with the special symbolROOT. The
children of a node are ordered with respect to each other and the node itself,
so that the node has bothleft childrenthat precede it andright children that
follow it.

2. A dependency tree isgrammaticalaccording toG iff for every word token
w that appears in the tree,lw accepts the (possibly empty) sequence ofw’s

15

left children (from right to left), andrw accepts the sequence ofw’s right
children (from left to right).

3. A stringx ∈ V ∗ is generated byG with analysisy if y is a grammatical
dependency tree according toG and listing the node labels ofy in infix order
yields the stringx followed byROOT; x is called theyield of y.

4. The languageL(G) is the set of all strings generated byG.

The general parsing algorithm proposed by Eisner for bilexical grammar is again a
dynamic programming algorithm, which proceeds by linkingspans(strings where
roots occur either leftmost or rightmost or both) instead ofconstituents, thereby
reducing the time complexity fromO(n5) to O(n3). More precisely, the running
time is O(n3g3t), whereg is an upper bound on the number of possible senses
(lexical entries) of a single word, andt is an upper bound on the number of states
of a single automaton.

Eisner shows how the framework of bilexical grammar, and thecubic-time
parsing algorithm, can be modified to capture a number of different frameworks
and approaches such as Milward’s (mono)lexical dependencygrammar (Milward,
1994), Alshawi’s head automata (Alshawi, 1996), Sleator and Temperley’s link
grammar (Sleator and Temperley, 1991, 1993), and Eisner’s own probabilistic de-
pendency models that will be discussed below in Section 3.2 (Eisner, 1996b,a).

The second main tradition in grammar-driven dependency parsing is based on
the notion ofeliminativeparsing, where sentences are analyzed by successively
eliminating representations that violate constraints until only valid representations
remain. One of the first parsing systems based on this idea is the CG framework
(Karlsson, 1990; Karlsson et al., 1995), which uses underspecified dependency
structures represented as syntactic tags and disambiguated by a set of constraints
intended to exclude ill-formed analyses. In CDG (Maruyama,1990), this idea is
extended to complete dependency structures by generalizing the notion of tag to
pairs consisting of a syntactic label and an identifier of thehead node. This kind of
representation is fundamental for many different approaches to dependency pars-
ing, since it provides a way to reduce the parsing problem to atagging or classi-
fication problem. Typical representatives of this tradition are the extended CDG
framework of Harper and Helzerman (1995) and the FDG system (Tapanainen and
Järvinen, 1997; J̈arvinen and Tapanainen, 1998), where the latter is a development
of CG that combines eliminative parsing with a non-projective dependency gram-
mar inspired by Tesnière (1959).

In the eliminative approach, parsing is viewed as a constraint satisfaction prob-
lem, where any analysis satisfying all the constraints of the grammar is a valid

16

analysis. Constraint satisfaction in general is NP complete, which means that spe-
cial care must be taken to ensure reasonable efficiency in practice. Early versions
of this approach used procedures based on local consistency(Maruyama, 1990;
Harper et al., 1995), which attain polynomial worst case complexity by only con-
sidering local information in the application of constraints. In the more recently
developed TDG framework (Duchier, 1999, 2003), the problemis confronted head-
on by using constraint programming to solve the satisfaction problem defined by
the grammar for a given input string. The TDG framework also introduces several
levels of representation (cf. Section 2.2), arguing that constraints can be simplified
by isolating different aspects of the grammar such as Immediate Dominance (ID)
and Linear Precedence (LP) and have constraints that relatedifferent levels to each
other (Duchier and Debusmann, 2001; Debusmann, 2001). Thisview is taken to
its logical extension in the most recent version of the framework called Extensible
Dependency Grammar (XDG), where any number of levels, or dimensions, can be
defined in the grammatical framework (Debusmann et al., 2004)

From the point of view of parsing unrestricted text, parsingas constraint satis-
faction can be problematic in two ways. First, for a given input string, there
may be no analysis satisfying all constraints, which leads to a robustness prob-
lem. Secondly, there may be more than one analysis, which leads to a problem
of disambiguation. Menzel and Schröder (1998) extends the CDG framework of
Maruyama (1990) withgraded, or weighted, constraints, by assigning a weightw

(0.0 ≤ w ≤ 1.0) to each constraint indicating how serious the violation ofthis
constraint is (where0.0 is the most serious). In this extended framework, later
developed into WCDG (Schröder, 2002), the best analysis for a given input string
is the analysis that minimizes the total weight of violated constraints. While early
implementations of this system used an eliminative approach to parsing (Menzel
and Schr̈oder, 1998), the more recent versions instead use a transformation-based
approach, which successively tries to improve the analysisby transforming one
solution into another guided by the observed constraint violations in the current
solution. One advantage of this heuristic approximation strategy is that it can be
combined with arbitrarily complex constraints, whereas standard eliminative pro-
cedures usually require constraints to be binary for efficiency reasons (Foth et al.,
2004).

So far, we have distinguished two main trends in grammar-driven dependency
parsing. The first is based on a formalization of dependency grammar that is closely
related to context-free grammar, and therefore usually restricted to projective de-
pendency structures, using standard techniques from context-free parsing to obtain
good efficiency in the presence of massive ambiguity, in particular dynamic pro-
gramming or memoization. The second is based on a formalization of dependency
grammar in terms of constraints, not necessarily limited toprojective structures,

17

where parsing is naturally viewed as a constraint satisfaction problem which can
be addressed using eliminative parsing methods, although the exact parsing prob-
lem is often intractable.

In addition to these two traditions, which both involve fairly complex grammars
and parsing algorithms, there is a third tradition which is based on a simpler notion
of dependency grammar together with a deterministic parsing strategy (possibly
with limited backtracking). As in other parsing paradigms,the study of determin-
istic parsing can be motivated either by a wish to model humansentence processing
or by a desire to make syntactic parsing more efficient (or possibly both). Accord-
ing to Covington (2001), these methods have been known sincethe 1960’s without
being presented systematically in the literature. The fundamental parsing strat-
egy comes in different versions but we will concentrate hereon the left-to-right
(or incremental) version, which is formulated in the following way by Covington
(2001):

Accept words one by one starting at the beginning of the sentence, and
try linking each word as head or dependent of every previous word.

This parsing strategy is compatible with many different grammar formulations. All
that is required is that a grammarG defines a boolean functionfG that, for any two
wordsw1 andw2, returnstrue if w1 can be the head ofw2 according toG (and
false) otherwise.9 Covington (2001) demonstrates how this parsing strategy can
be used to produce dependency structures satisfying different conditions such as
uniqueness(single head) andprojectivitysimply by imposing different constraints
on the linking operation. Covington has also shown in previous work how this
parsing strategy can be adapted to suit languages with free,flexible or rigid word
order (Covington, 1990a,b, 1994). The time complexity of Covington’s algorithm
is O(n2) in the deterministic version.

The parsing algorithm proposed by Nivre (2003), which will be discussed in
Section 3.2, can be derived as a special case of Covington’s algorithm, although we
will not give this formulation here, and the very first experiments with this algo-
rithm used a simple grammar of the kind presupposed by Covington to perform
unlabeled dependency parsing (Nivre, 2003). A similar approach can be found
in Obrebski (2003), although this system is nondeterministic and derives a com-
pact representation of all permissible dependency trees inthe form of a directed
acyclic graph. Yet another framework that shows affinities with the determinis-
tic grammar-driven approach is that of Kromann (2004), although it is based on a

9In this formulation, the parsing strategy is limited to unlabeled dependency graphs. In principle,
it is possible to perform labeled dependency parsing by returning a set of permissible dependency
types instead oftrue, but this makes the process nondeterministic in general.

18

more sophisticated notion of grammar called DiscontinuousGrammar. Parsing in
this framework is essentially deterministic but subject torepair mechanisms that
are associated with local cost functions derived from the grammar.

Before we close the discussion of grammar-driven dependency parsing, we
should also mention the work of Oflazer (2003), which is an extended finite-state
approach to dependency parsing similar to the cascaded partial parsers used for
constituency-based parsing by Abney (1996) and Roche (1997). Oflazer’s system
allows violable constraints for robust parsing and uses total link length to rank
alternative analyses, as proposed by Lin (1996).

3.2 Data-Driven Dependency Parsing

As for natural language parsing in general, the first attempts at data-driven depen-
dency parsing were also grammar-driven in that they relied on a formal dependency
grammar and used corpus data to induce a probabilistic modelfor disambigua-
tion. Thus, Carroll and Charniak (1992) essentially use a PCFG model, where
the context-free grammar is restricted to be equivalent to aHays/Gaifman type
dependency grammar. They report experiments trying to induce such a probabilis-
tic grammar using unsupervised learning on an artificially created corpus but with
relatively poor results.

A more successful and more influential approach was developed by Eisner
(1996a,b), who defined several probabilistic models for dependency parsing and
evaluated them using supervised learning with data from theWall Street Journal
section of the Penn Treebank. In later work, Eisner (2000) has shown how these
models can be subsumed under the general notion of abilexical grammar(BG),
which means that parsing can be performed efficiently as discussed in Section 3.1.
Eisner (2000) defines the notion of aweighted bilexical grammar(WBG) in terms
of BG as follows (cf. Section 3.1):

1. A weighted DFAA is a deterministic finite automaton that associates a real-
valuedweightwith each arc and each final state. Each accepting path through
A is assigned a weight, namely the sum of all arc weights on the path and the
weight of the final state. Each stringx accepted byA is assigned the weight
of its accepting path.

2. A WBG G is a BG in which all the automatalw andrw are weighted DFAs.
The weight of a dependency treey underG is defined as the sum, over all
word tokensw in y, of the weight with whichlw acceptsw’s sequence of
left children plus the weight with whichrw acceptsw’s sequence of right
children.

19

Eisner (1996b) presents three different probabilistic models for dependency pars-
ing, which can be reconstructed as different weighting schemes within the frame-
work of WBG. However, the first two models (models A and B) require that we dis-
tinguish between an underlying stringx ∈ V ∗, described by the WBG, and a sur-
face stringx′, which results from a possibly nondeterministic, possiblyweighted
finite-state transductionR on x. The surface stringx′ is then grammatical with
analysis(y, p) if y is a grammatical dependency tree whose yieldx is transduced
to x′ along an accepting pathp in R. To avoid the distinction between underlying
strings and surface strings, we will restrict our attentionto model C, which was
found to perform significantly better than the other two models in the experiments
reported in Eisner (1996a).

First of all, it should be pointed out that all the models in Eisner (1996b) in-
volve part-of-speech tags, in addition to word tokens and (unlabeled) dependency
relations, and define the joint probability of the words, tags and dependency links.
Model C is defined as follows:

P (tw(1), . . ., tw(n), links) =
n∏

i=1

P (lc(i) | tw(i))P (rc(i) | tw(i)) (5)

wheretw(i) is theith tagged word, andlc(i) andrc(i) are the left and right chil-
dren of theith word, respectively. The probability of generating each child is con-
ditioned on the tagged head word and the tag of the preceding child (left children
being generated from right to left):

P (lc(i) | tw(i)) =
m∏

j=1

P (tw(lcj(i)) | t(lcj−1(i)), tw(i)) (6)

P (rc(i) | tw(i)) =
m∏

j=1

P (tw(rcj(i)) | t(rcj−1(i)), tw(i)) (7)

wherelcj(i) is thejth left child of theith word andt(lcj−1(i)) is the tag of the
preceding left child (and analogouslyrcj(i) and t(rcj−1(i)) for right children).
This model can be implemented in the WBG framework by lettingthe automata
lw and rw have weights on their arcs corresponding to the log of the probabil-
ity of generating a particular left or right child given the tag of the preceding
child. In this way, the weight assigned to a dependency treeT will be the log
of P (tw(1), . . ., tw(n), links) as defined above (Eisner, 2000).

Eisner’s work on data-driven dependency parsing has been influential in two
ways. First, it showed that generative probabilistic modeling and supervised learn-
ing could be applied to dependency representations to achieve a parsing accuracy
comparable to the best results reported for constituency-based parsing at the time,

20

although the evalutation metrics used in the two cases are not strictly comparable.
Secondly, it showed how these models could be coupled with efficient parsing tech-
niques that exploit the special properties of dependency structures. The importance
of the second aspect can be seen in recent work by McDonald et al. (2005), apply-
ing discriminative estimation methods to probabilistic dependency parsing. Thanks
to the more efficient parsing methods offered by Eisner’s methods for bilexical
parsing, training can be performed without pruning the search space, which is im-
possible for efficiency reasons when using lexicalized constituency representations
with comparable lexical dependencies.

Collins et al. (1999) apply the generative probabilistic parsing models of Collins
(1997, 1999) to dependency parsing, using data from the Prague Dependency Tree-
bank. This requires preprocessing to transform dependencystructures into flat
phrase structures for the training phase and postprocessing to extract dependency
structures from the phrase structures produced by the parser. The parser of Char-
niak (2000) has been adapted and applied to the Prague Dependency Treebank in a
similar fashion, although this work remains unpublished.

Samuelsson (2000) proposes a probabilistic model for dependency grammar
that goes beyond the models considered so far by incorporating labeled depen-
dencies and allowing non-projective dependency structures. In this model, depen-
dency representations are generated by two stochastic processes: one top-down
process generating the tree structurey and one bottom-up process generating the
surface stringx given the tree structure, defining the joint probability asP (x, y) =
P (y)P (x|y). Samuelsson suggests that the model can be implemented using a
bottom-up dynamic programming approach, but the model has unfortunately never
been implemented and evaluated.

Another probabilistic approach to dependency parsing thatincorporates labeled
dependencies is the stochastic CDG parser of Wang and Harper(2004), which ex-
tends the CDG model with a generative probabilistic model. Parsing is performed
in two steps, which may be tightly or loosely integrated, where the first step as-
signs to each word a set of SuperARVs, representing constraints on possible heads
and dependents, and where the second step determines actualdependency links
given the SuperARV assignment. Although the basic model andparsing algorithm
is limited to projective structures, the system allows non-projective structures for
certainwh-constructions. The system has been evaluated on data from the Wall
Street Journal section of the Penn Treebank and achieves state-of-the-art perfor-
mance using a dependency-based evaluation metric (Wang andHarper, 2004).

The first step in the parsing model of Wang and Harper (2004) can be seen as a
kind of supertagging, which has turned out to be a crucial element in many recent
approaches to statistical parsing, e.g. in LTAG (Joshi and Sarkar, 2003; Banga-
lore, 2003) and CCG (Clark and Curran, 2004; Curran and Clark, 2004). A similar

21

two-step process is used in the statistical dependency parser of Bangalore (2003),
which uses elementary LTAG trees as supertags in order to derive a dependency
structure in the second step. Supertagging is performed using a standard HMM
trigram tagger, while dependency structures are derived using a heuristic determin-
istic algorithm that runs in linear time. Another data-driven dependency parser
based on supertagging is Nasr and Rambow (2004), where supertags are derived
from a lexicalized extended context-free grammar and the most probable analysis
is derived using a modified version of the CKY algorithm.

Most of the systems described in this section are based on a formal dependency
grammar in combination with a generative probabilistic model, which means that
parsing conceptually consists in the derivation of all analyses that are permissible
according to the grammar and the selection of the most probable analysis according
to the generative model. This is in contrast to recent work based on purely discrim-
inative models of inductive learning in combination with a deterministic parsing
strategy, methods that do not involve a formal grammar.

The deterministic discriminative approach was first proposed by Kudo and
Matsumoto (2000, 2002) and Yamada and Matsumoto (2003), using support vector
machines (Vapnik, 1995) to train classifiers that predict the next action of a deter-
ministic parser constructing unlabeled dependency structures. The parsing algo-
rithm used in these systems implements a form of shift-reduce parsing with three
possible parse actions that apply to two neighboring words referred to astarget
nodes:10

1. A Shiftaction adds no dependency construction between the target wordswi

andwi+1 but simply moves the point of focus to the right, makingwi+1 and
wi+2 the new target words.

2. A Right action constructs a dependency relation between the targetwords,
adding the left nodewi as a child of the right nodewi+1 and reducing the
target words towi+1, makingwi−1 andwi+1 the new target words.

3. A Left action constructs a dependency relation between the targetwords,
adding the right nodewi+1 as a child of the left nodewi and reducing the
target words towi, makingwi−1 andwi the new target words.

The parser processes the input from left to right repeatedlyas long as new depen-
dencies are added, which means that up ton − 1 passes over the input may be
required to construct a complete dependency tree, giving a worst case time com-
plexity of O(n2), although the worst case seldom occurs in practice. The features

10The parsers described in Kudo and Matsumoto (2000, 2002) areapplied to Japanese, which is
assumed to be strictly head-final, which means that only the actionsShiftandRightare required.

22

used to predict the next parse action are the word forms and part-of-speech tags of
the target words, of their left and right children, and of their left and right string
context (in the reduced string). Yamada and Matsumoto (2003) evaluate the system
using the standard data set from the Wall Street Journal section of the Penn Tree-
bank and shows that deterministic discriminative dependency parsing can achieve
an accuracy that is close to the state-of-the-art with respect to dependency accuracy.
Further improvements with this model are reported in Isozaki et al. (2004).

The framework of inductive dependency parsing, first presented in Nivre et al.
(2004) and more fully described in Nivre (2005), has many properties in common
with the system of Yamada and Matsumoto (2003), but there arethree differences.
The first and most important difference is that the system of Nivre et al. (2004)
constructs labeled dependency representations, i.e. representations where depen-
dency arcs are labeled with dependency types. This also means that dependency
type information can be exploited in the feature model used to predict the next
parse action. The second difference is that the algorithm proposed in Nivre (2003)
is a head-driven arc-eager algorithm that constructs a complete dependency tree in
a single pass over the data. The third and final difference is that Nivre et al. (2004)
use memory-based learning to induce classifiers for predicting the next parsing
action based on conditional features, whereas Yamada and Matsumoto (2003) use
support vector machines. However, as pointed out by Kudo andMatsumoto (2002),
in a deterministic discriminative parser the learning method is largely independent
of the rest of the system.

4 The Case for Dependency Parsing

As noted several times already, dependency-based syntactic representations have
played a fairly marginal role in the history of linguistic theory as well as that of
natural language processing. Saying that there is increasing interest in dependency-
based approaches to syntactic parsing may therefore not be saying very much, but
it is hard to deny that the notion of dependency has become more prominent in the
literature on syntactic parsing during the last decade or so.

In conclusion, it therefore seems appropriate to ask what are the potential bene-
fits of using dependency-based representations in syntactic parsing, as opposed to
the more traditional representations based on constituency. According to Coving-
ton (2001), dependency parsing offers threeprima facieadvantages:

• Dependency links are close to the semantic relationships needed for the next
stage of interpretation; it is not necessary to “read off” head-modifier or
head-complement relations from a tree that does not show them directly.

23

• The dependency tree contains one node per word. Because the parser’s job is
only to connect existing nodes, not to postulate new ones, the task of parsing
is in some sense more straightforward. [...]

• Dependency parsing lends itself to word-at-a-time operation, i.e., parsing
by accepting and attaching words one at a time rather than by waiting for
complete phrases. [...]

To this it is sometimes added that dependency-based parsingallows a more ade-
quate treatment of languages with variable word order, where discontinuous syn-
tactic constructions are more common than in languages likeEnglish (Mel’̌cuk,
1988; Covington, 1990b). However, this argument is only plausible if the formal
framework allows non-projective dependency structures, which is not the case for
most dependency parsers that exist today.

For us, the first two advantages identified by Covington seem to be the most
important. Having a more constrained representation, where the number of nodes
is fixed by the input string itself, should enable conceptually simpler and compu-
tationally more efficient methods for parsing. At the same time, it is clear that
a more constrained representation is a less expressive representation and that de-
pendency representations are necessarily underspecified with respect to certain as-
pects of syntactic structure. For example, as pointed out byMel’ čuk (1988), it
is impossible to distinguish in a pure dependency representation between an ele-
ment modifying the head of a phrase and the same element modifying the entire
phrase. However, this is precisely the kind of ambiguity that is notoriously hard to
disambiguate correctly in syntactic parsing anyway, so it might be argued that this
kind of underspecification is actually beneficial. And as long as the syntactic rep-
resentation encodes enough of the structural relations that are relevant for semantic
interpretation, then we are only happy if we can constrain the problem of deriving
these representations.

In general, there is a tradeoff between the expressivity of syntactic represen-
tations and the complexity of syntactic parsing, and we believe that dependency
representations provide a good compromise in this respect.They are less expres-
sive than most constituency-based representations, but they compensate for this
by providing a relatively direct encoding of predicate-argument structure, which is
relevant for semantic interpretation, and by being composed of bilexical relations,
which are beneficial for disambiguation. In this way, dependency structures are
sufficiently expressive to be useful in natural language processing systems and at
the same time sufficiently restricted to allow full parsing with high accuracy and
efficiency. At least, this seems like a reasonable working hypothesis.

24

References

Abney, S. (1996). Partial parsing via finite-state cascades. Journal of Natural
Language Engineering2: 337–344.

Alshawi, H. (1996). Head automata and bilingual tiling: Translation with minimal
representations.Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 167–176.

Bangalore, S. (2003). Localizing dependencies and supertagging. In Bod, R., Scha,
R. and Sima’an, K. (eds),Data-Oriented Parsing, CSLI Publications, University
of Chicago Press, pp. 283–298.

Bar-Hillel, Y., Gaifman, C. and Shamir, E. (1960). On categorial and phrase-
structure grammars.Bulletin of the Research Council of Israel9F: 1–16.

Barbero, C., Lesmo, L., Lombardo, V. and Merlo, P. (1998). Integration of syn-
tactic and lexical information in a hierarchical dependency grammar. In Ka-
hane, S. and Polguère, A. (eds),Proceedings of the Workshop on Processing of
Dependency-Based Grammars (ACL-COLING), pp. 58–67.

Bloomfield, L. (1933).Language. The University of Chicago Press.

Carroll, G. and Charniak, E. (1992). Two experiments on learning probabilistic
dependency grammars from corpora,Technical Report TR-92, Department of
Computer Science, Brown University.

Carroll, J. (2000). Statistical parsing. In Dale, R., Moisl, H. and Somers, H. (eds),
Handbook of Natural Language Processing, Marcel Dekker, pp. 525–543.

Charniak, E. (2000). A maximum-entropy-inspired parser.Proceedings of the First
Meeting of the North American Chapter of the Association forComputational
Linguistics (NAACL), pp. 132–139.

Chomsky, N. (1970). Remarks on nominalization. In Jacobs, R. and Rosenbaum,
P. S. (eds),Readings in English Transformational Grammar, Ginn and Co.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ using CCG and log-linear
models. Proceedings of the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL), pp. 104–111.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing.
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 16–23.

25

Collins, M. (1999).Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania.

Collins, M., Hajǐc, J., Brill, E., Ramshaw, L. and Tillmann, C. (1999). A statis-
tical parser for Czech.Proceedings of the 37th Meeting of the Association for
Computational Linguistics (ACL), pp. 505–512.

Covington, M. A. (1984).Syntactic Theory in the High Middle Ages. Cambridge
University Press.

Covington, M. A. (1990a). A dependency parser for variable-word-order lan-
guages,Technical Report AI-1990-01, University of Georgia.

Covington, M. A. (1990b). Parsing discontinuous constituents in dependency
grammar.Computational Linguistics16: 234–236.

Covington, M. A. (1994). Discontinuous dependency parsingof free and fixed
word order: Work in progress,Technical Report AI-1994-02, University of Geor-
gia.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing.Pro-
ceedings of the 39th Annual ACM Southeast Conference, pp. 95–102.

Curran, J. R. and Clark, S. (2004). The importance of supertagging for wide-
coverage CCG parsing.Proceedings of the 20th International Conference on
Computational Linguistics (COLING), pp. 282–288.

Debusmann, R. (2001).A declarative grammar formalism for dependency gram-
mar, Master’s thesis, Computational Linguistics, Universität des Saarlandes.

Debusmann, R., Duchier, D. and Kruijff, G.-J. M. (2004). Extensible dependency
grammar: A new methodology.Proceedings of the Workshop on Recent Ad-
vances in Dependency Grammar, pp. 78–85.

Dowty, D. (1989). On the semantic content of the notion of ‘thematic role’. In
Chierchia, G., Partee, B. H. and Turner, R. (eds),Properties, Types and Meaning.
Volume II: Semantic Issues, Reider, pp. 69–130.

Duchier, D. (1999). Axiomatizing dependency parsing usingset constraints.Pro-
ceedings of the Sixth Meeting on Mathematics of Language, pp. 115–126.

Duchier, D. (2003). Configuration of labeled trees under lexicalized constraints
and principles.Research on Language and Computation1: 307–336.

26

Duchier, D. and Debusmann, R. (2001). Topological dependency trees: A
constraint-based account of linear precedence.Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 180–187.

Earley, J. (1970). En efficient context-free parsing algorithm. Communications of
the ACM13: 94–102.

Eisner, J. M. (1996a). An empirical comparison of probability models for depen-
dency grammar,Technical Report IRCS-96-11, Institute for Research in Cogni-
tive Science, University of Pennsylvania.

Eisner, J. M. (1996b). Three new probabilistic models for dependency parsing:
An exploration.Proceedings of the 16th International Conference on Computa-
tional Linguistics (COLING), pp. 340–345.

Eisner, J. M. (2000). Bilexical grammars and their cubic-time parsing algorithms.
In Bunt, H. and Nijholt, A. (eds),Advances in Probabilistic and Other Parsing
Technologies, Kluwer, pp. 29–62.

Fillmore, C. J. (1968). The case for case. In Bach, E. W. and Harms, R. T. (eds),
Universals in Linguistic Theory, Holt, Rinehart and Winston, pp. 1–88.

Foth, K., Daum, M. and Menzel, W. (2004). A broad-coverage parser for German
based on defeasible constraints.Proceedings of KONVENS 2004, pp. 45–52.

Gaifman, H. (1965). Dependency systems and phrase-structure systems.Informa-
tion and Control8: 304–337.

Grimaldi, R. P. (2004). Discrete and Combinatorial Mathematics. 5th edn,
Addison-Wesley.

Harper, M. P. and Helzerman, R. A. (1995). Extensions to constraint depen-
dency parsing for spoken language processing.Computer Speech and Language
9: 187–234.

Harper, M. P., Helzermann, R. A., Zoltowski, C. B., Yeo, B. L., Chan, Y., Steward,
T. and Pellom, B. L. (1995). Implementation issues in the development of the
PARSEC parser.Software: Practice and Experience25: 831–862.

Hays, D. G. (1964). Dependency theory: A formalism and some observations.
Language40: 511–525.

Hellwig, P. (1980). PLAIN – a program system for dependency analysis and for
simulating natural language inference. In Bolc, L. (ed.),Representation and
Processing of Natural Language, Hanser, pp. 195–198.

27

Hellwig, P. (1986). Dependency unification grammar.Proceedings of the 11th
International Conference on Computational Linguistics (COLING), pp. 195–
198.

Hellwig, P. (2003). Dependency unification grammar. In Agel, V., Eichinger, L. M.,
Eroms, H.-W., Hellwig, P., Heringer, H. J. and Lobin, H. (eds), Dependency and
Valency, Walter de Gruyter, pp. 593–635.

Holan, T., Kubǒn, V. and Pĺatek, M. (1997). A prototype of a grammar checker for
Czech.Fifth Conference on Applied Natural Language Processing, pp. 147–154.

Hudson, R. A. (1984).Word Grammar. Blackwell.

Hudson, R. A. (1990).English Word Grammar. Blackwell.

Isozaki, H., Kazawa, H. and Hirao, T. (2004). A deterministic word dependency
analyzer enhanced with preference learning.Proceedings of the 20th Interna-
tional Conference on Computational Linguistics (COLING), pp. 275–281.

Jackendoff, R. (1972).Semantic Interpretation in Generative Grammar. MIT
Press.

Jackendoff, R. S. (1977).X Syntax: A Study of Phrase Structure. MIT Press.

Järvinen, T. and Tapanainen, P. (1998). Towards an implementable dependency
grammar. In Kahane, S. and Polguère, A. (eds),Proceedings of the Workshop
on Processing of Dependency-Based Grammars, pp. 1–10.

Joshi, A. and Sarkar, A. (2003). Tree adjoining grammars andtheir application to
statistical parsing. In Bod, R., Scha, R. and Sima’an, K. (eds), Data-Oriented
Parsing, CSLI Publications, University of Chicago Press, pp. 253–281.

Kahane, S., Nasr, A. and Rambow, O. (1998). Pseudo-projectivity: A polyno-
mially parsable non-projective dependency grammar.Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and the 17th
International Conference on Computational Linguistics, pp. 646–652.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text.
In Karlgren, H. (ed.),Papers presented to the 13th International Conference on
Computational Linguistics (COLING), pp. 168–173.

Karlsson, F., Voutilainen, A., Heikkilä, J. and Anttila, A. (eds) (1995).Constraint
Grammar: A language-independent system for parsing unrestricted text. Mou-
ton de Gruyter.

28

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free
languages,Technical Report AF-CRL-65-758, Air Force Cambridge Research
Laboratory.

Kromann, M. T. (2004). Optimality parsing and local cost functions in Discontin-
uous Grammar.Electronic Notes of Theoretical Computer Science53: 163–179.

Kruijff, G.-J. M. (2001). A Categorial-Modal Logical Architecture of Informa-
tivity: Dependency Grammar Logic and Information Structure. PhD thesis,
Charles University.

Kruijff, G.-J. M. (2002). Formal and computational aspectsof dependency gram-
mar: History and development of DG,Technical report, ESSLLI-2002.

Kudo, T. and Matsumoto, Y. (2000). Japanese dependency structure analysis based
on support vector machines.Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large Corpora
(EMNLP/VLC), pp. 18–25.

Kudo, T. and Matsumoto, Y. (2002). Japanese dependency analysis using cas-
caded chunking.Proceedings of the Sixth Workshop on Computational Lan-
guage Learning (CoNLL), pp. 63–69.

Lecerf, Y. (1960). Programme des conflits, modèle des conflits.Bulletin bimestriel
de l’ATALA1(4): 11–18, 1(5): 17–36.

Lin, D. (1996). On the structural complexity of natural language sentences.Pro-
ceedings of the 16th International Conference on Computational Linguistics
(COLING), pp. 729–733.

Lombardo, V. and Lesmo, L. (1996). An Earley-type recognizer for Dependency
Grammar.Proceedings of the 16th International Conference on Computational
Linguistics (COLING), pp. 723–728.

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn Treebank.Computational Linguistics
19: 313–330.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Fer-
guson, M., Katz, K. and Schasberger, B. (1994). The Penn Treebank: Annotat-
ing predicate-argument structure.Proceedings of the ARPA Human Language
Technology Workshop, pp. 114–119.

29

Marcus, S. (1965). Sur la notion de projectivité. Zeitschrift f̈ur mathematische
Logik und Grundlagen der Mathematik11: 181–192.

Maruyama, H. (1990). Structural disambiguation with constraint propagation.Pro-
ceedings of the 28th Meeting of the Association for Computational Linguistics
(ACL), Pittsburgh, PA, pp. 31–38.

McDonald, R., Crammer, K. and Pereira, F. (2005). Online large-margin training of
dependency parsers.Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 91–98.

Mel’ čuk, I. (1988).Dependency Syntax: Theory and Practice. State University of
New York Press.

Menzel, W. and Schröder, I. (1998). Decision procedures for dependency parsing
using graded constraints. In Kahane, S. and Polguère, A. (eds),Proceedings of
the Workshop on Processing of Dependency-Based Grammars, pp. 78–87.

Milward, D. (1994). Dynamic dependency grammar.Linguistics and Philosophy
17: 561–605.

Misra, V. N. (1966).The Descriptive Technique of Panini. Mouton.

Nasr, A. and Rambow, O. (2004). A simple string-rewriting formalism for depen-
dency grammar.Proceedings of the Workshop on Recent Advances in Depen-
dency Grammar, pp. 25–32.

Nikula, H. (1986).Dependensgrammatik. Liber.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In
Van Noord, G. (ed.),Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT), pp. 149–160.

Nivre, J. (2005).Inductive Dependency Parsing of Natural Language Text. PhD
thesis, V̈axjö University.

Nivre, J., Hall, J. and Nilsson, J. (2004). Memory-based dependency parsing. In
Ng, H. T. and Riloff, E. (eds),Proceedings of the 8th Conference on Computa-
tional Natural Language Learning (CoNLL), pp. 49–56.

Obrebski, T. (2003). Dependency parsing using dependency graph. In Van Noord,
G. (ed.),Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), pp. 217–218.

30

Oflazer, K. (2003). Dependency parsing with an extended finite-state approach.
Computational Linguistics29: 515–544.

Robins, R. H. (1967).A Short History of Linguistics. Longman.

Robinson, J. J. (1970). Dependency structures and transformational rules.Lan-
guage46: 259–285.

Roche, E. (1997). Parsing with finite state transducers. In Roche, E. and Schabes,
Y. (eds),Finite-State Language Processing, MIT Press, pp. 241–281.

Samuelsson, C. (2000). A statistical theory of dependency syntax. Proceedings of
the 18th International Conference on Computational Linguistics (COLING).

Schr̈oder, I. (2002). Natural Language Parsing with Graded Constraints. PhD
thesis, Hamburg University.

Sgall, P., Hajǐcová, E. and Panevová, J. (1986).The Meaning of the Sentence in Its
Pragmatic Aspects. Reidel.

Sleator, D. and Temperley, D. (1991). Parsing English with alink grammar,Tech-
nical Report CMU-CS-91-196, Carnegie Mellon University, Computer Science.

Sleator, D. and Temperley, D. (1993). Parsing English with alink grammar.Third
International Workshop on Parsing Technologies (IWPT), pp. 277–292.

Starosta, S. (1988).The Case for Lexicase: An Outline of Lexicase Grammatical
Theory. Pinter Publishers.

Tapanainen, P. and Järvinen, T. (1997). A non-projective dependency parser.
Proceedings of the 5th Conference on Applied Natural Language Processing,
pp. 64–71.

Tesnìere, L. (1959).Éléments de syntaxe structurale. Editions Klincksieck.

Vapnik, V. N. (1995).The Nature of Statistical Learning Theory. Springer.

Wang, W. and Harper, M. P. (2004). A statistical constraint dependency grammar
(CDG) parser. In Keller, F., Clark, S., Crocker, M. and Steedman, M. (eds),
Proceedings of the Workshop in Incremental Parsing: Bringing Engineering and
Cognition Together (ACL), pp. 42–29.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with sup-
port vector machines. In Van Noord, G. (ed.),Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT), pp. 195–206.

31

Yli-Jyrä, A. (2003). Multiplanarity – a model for dependency structures in tree-
banks. In Nivre, J. and Hinrichs, E. (eds),Proceedings of the Second Workshop
on Treebanks and Linguistic Theories (TLT), Växjö University Press, pp. 189–
200.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time
n3. Information and Control10: 189–208.

Zwicky, A. M. (1985). Heads.Journal of Linguistics21: 1–29.

32

Natural Language Engineering 13 (2): 95–135. c© 2007 Cambridge University Press

doi:10.1017/S1351324906004505 First published online 12 January 2007 Printed in the United Kingdom
95

MaltParser: A language-independent system

for data-driven dependency parsing

J O A K I M N I V R E
Växjö University, School of Mathematics and Systems Engineering, 35195 Växjö, Sweden

Uppsala University, Department of Linguistics and Philology, Box 635, 75126 Uppsala, Sweden

e-mail: joakim.nivre@msi.vxu.se

J O H A N H A L L, J E N S N I L S S O N
Växjö University, School of Mathematics and Systems Engineering, 35195 Växjö, Sweden

e-mail: {johan.hall,jens.nilsson}@msi.vxu.se

A T A N A S C H A N E V
University of Trento, Dept. of Cognitive Sciences, 38068 Rovereto, Italy

ITC-irst, 38055 Povo-Trento, Italy

e-mail: chanev@form.unitn.it

G Ü L Ş E N E R Y İ Ǧ İ T
Istanbul Technical University, Dept. of Computer Engineering, 34469 Istanbul, Turkey

e-mail: gulsen.cebiroglu@itu.edu.tr

S A N D R A K Ü B L E R
University of Tübingen, Seminar für Sprachwissenschaft, Wilhelmstr. 19, 72074 Tübingen, Germany

e-mail: kuebler@sfs.uni-tuebingen.de

S V E T O S L A V M A R I N O V
University of Skövde, School of Humanities and Informatics, Box 408, 54128 Skövde, Sweden

Göteborg University & GSLT, Faculty of Arts, Box 200, 40530 Göteborg, Sweden

e-mail: svetoslav.marinov@his.se

E R W I N M A R S I
Tilburg University, Communication and Cognition, Box 90153, 5000 LE Tilburg, The Netherlands

e-mail: e.c.marsi@uvt.nl

(Received 16 February 2006; revised 15 August 2006)

Abstract

Parsing unrestricted text is useful for many language technology applications but requires

parsing methods that are both robust and efficient. MaltParser is a language-independent sys-

tem for data-driven dependency parsing that can be used to induce a parser for a new language

from a treebank sample in a simple yet flexible manner. Experimental evaluation confirms that

MaltParser can achieve robust, efficient and accurate parsing for a wide range of languages

without language-specific enhancements and with rather limited amounts of training data.

1 Introduction

One of the potential advantages of data-driven approaches to natural language

processing is that they can be ported to new languages, provided that the necessary

96 J. Nivre et al.

linguistic data resources are available. In practice, this advantage can be hard to

realize if models are overfitted to a particular language or linguistic annotation

scheme. Thus, several studies have reported a substantial increase in error rate

when applying state-of-the-art statistical parsers developed for English to other

languages, such as Czech (Collins et al. 1999), Chinese (Bikel and Chiang 2000;

Levy and Manning 2003), German (Dubey and Keller 2003), and Italian (Corazza

et al. 2004). Another potential obstacle to successful reuse is that data-driven models

may require large amounts of annotated training data to give good performance,

while for most languages the availability of such resources is relatively limited. This

is also a problem when porting parsers to new domains, even for languages where

large amounts of annotated data are available (Titov and Henderson 2006). Given

that approaches based on completely unsupervised learning are still vastly inferior

in terms of accuracy, there is consequently a need for supervised approaches that

are resilient against data sparseness.

In this article, we present a data-driven approach to dependency parsing that has

been applied to a range of different languages, consistently giving a dependency

accuracy in the range 80–90%, usually with less than a 5% increase in error rate

compared to state-of-the-art parsers for the language in question. All these results

have been obtained without any language-specific enhancements and in most cases

with fairly modest data resources.

The methodology is based on three essential techniques:

1. Deterministic parsing algorithms for building dependency graphs (Kudo and

Matsumoto 2002; Yamada and Matsumoto 2003; Nivre 2003)

2. History-based feature models for predicting the next parser action (Black et al.

1992; Magerman 1995; Ratnaparkhi 1997; Collins 1999)

3. Discriminative machine learning to map histories to parser actions (Veenstra

and Daelemans 2000; Kudo and Matsumoto 2002; Yamada and Matsumoto

2003; Nivre et al. 2004)

The system uses no grammar but relies completely on inductive learning from

treebank data for the analysis of new sentences and on deterministic parsing for

disambiguation. This combination of methods guarantees that the parser is both

robust, producing a well-formed analysis for every input sentence, and efficient,

deriving this analysis in time that is linear or quadratic in the length of the sentence

(depending on the particular algorithm used).

This methodology has been implemented in the MaltParser system, which can be

applied to a labeled dependency treebank in order to induce a labeled dependency

parser for the language represented by the treebank. MaltParser is freely available

for research and educational purposes1 and has been designed primarily as a tool

for research on data-driven dependency parsing, allowing users to flexibly combine

different parsing algorithms, feature models, and learning algorithms. However,

given that the necessary data resources are available, MaltParser can also be used

1 URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html.

MaltParser 97

for rapid development of robust and efficient dependency parsers, which can be used

in language technology applications that require parsing of unrestricted text.

In this article, we begin by describing the general methodology of deterministic

dependency parsing with history-based feature models and discriminative machine

learning (section 2). We then describe the implemented MaltParser system, focusing

on its functionality with respect to parsing algorithms, feature models, and learning

algorithms (section 3). To support our claims about language-independence and

resilience against data sparseness, we then present an experimental evaluation based

on data from ten different languages, with treebanks of different sizes and with

different annotation schemes (section 4). Finally, we draw some general conclusions

and make some suggestions for future work (section 5).

2 Inductive dependency parsing

Mainstream approaches in statistical parsing are based on nondeterministic parsing

techniques, usually employing some kind of dynamic programming, in combination

with generative probabilistic models that provide an n-best ranking of the set of

candidate analyses derived by the parser. This methodology is exemplified by the

influential parsers of Collins (1997; 1999) and Charniak (2000), among others. The

accuracy of these parsers can be further improved by reranking the analyses output

by the parser, typically using a discriminative model with global features that are

beyond the scope of the underlying generative model (Johnson et al. 1999; Collins

2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and Johnson 2005).

A radically different approach is to perform disambiguation deterministically,

using a greedy parsing algorithm that approximates a globally optimal solution by

making a series of locally optimal choices, guided by a classifier trained on gold

standard derivation sequences derived from a treebank. Although this may seem like

a futile strategy for a complex task like parsing, it has recently been used with some

success especially in dependency-based parsing.2 It was first applied to unlabeled

dependency parsing by Kudo and Matsumoto (2002) (for Japanese) and by Yamada

and Matsumoto (2003) (for English). It was later extended to labeled dependency

parsing by Nivre et al. (2004) (for Swedish) and Nivre and Scholz (2004) (for

English). More recently, it has also been applied with good results to lexicalized

phrase structure parsing by Sagae and Lavie (2005).

One of the advantages of the deterministic, classifier-based approach is that it

is straightforward to implement and has a very attractive time complexity, with

parsing time being linear or at worst quadratic in the size of the input, although the

constant associated with the classifier can sometimes become quite large. Moreover,

while the accuracy of a deterministic parser is normally a bit lower than what can be

attained with a more complex statistical model, trained and tuned on large amounts

of data, the deterministic parser will often have a much steeper learning curve,

2 In fact, essentially the same methodology has been proposed earlier for other frameworks
by Berwick (1985), Simmons and Yu (1992), Zelle and Mooney (1993) and Veenstra and
Daelemans (2000), among others, although these approaches have typically been evaluated
only on artificially generated or very small data sets.

98 J. Nivre et al.

which means that it may in fact give higher accuracy with small training data sets.

This is a natural consequence of the fact that the deterministic model has a much

smaller parameter space, where only the mode of the distribution for each distinct

history needs to be estimated, whereas a traditional generative model requires a

complete probability distribution. Finally, and for essentially the same reason, the

deterministic model can be less sensitive to differences in linguistic structure and

annotation style across languages and should therefore be more easily portable

without substantial adaptation.

In this study, we investigate these issues by applying the deterministic, classifier-

based approach, as implemented in the MaltParser system for inductive dependency

parsing, to a wide range of languages with varying annotation schemes and with data

sets of varying sizes. By way of background, this section presents the theoretical

foundations of inductive dependency parsing, defining syntactic representations,

parsing algorithms, feature models, and learning algorithms.3 In section 3, we then

describe the implemented MaltParser system that has been used for the experiments

reported in section 4.

2.1 Dependency graphs

In dependency parsing, the syntactic analysis of a sentence is represented by a

dependency graph, which we define as a labeled directed graph, the nodes of which

are indices corresponding to the tokens of a sentence. Formally:

Definition 1

Given a set R of dependency types (arc labels), a dependency graph for a sentence

x = (w1, . . . , wn) is a labeled directed graph G = (V , E, L), where:

1. V = Zn+1

2. E ⊆ V × V

3. L : E → R

Definition 2

A dependency graph G is well-formed if and only if:

1. The node 0 is a root (Root).

2. G is connected (Connectedness).4

The set V of nodes (or vertices) is the set Zn+1 = {0, 1, 2, . . . , n} (n ∈ Z+), i.e., the set

of non-negative integers up to and including n. This means that every token index i

of the sentence is a node (1 ≤ i ≤ n) and that there is a special node 0, which does

not correspond to any token of the sentence and which will always be a root of the

dependency graph (normally the only root).

3 For an in-depth discussion of inductive dependency parsing and its relation to other parsing
methods, see Nivre (2006).

4 Strictly speaking, we require the graph to be weakly connected, which entails that the
corresponding undirected graph is connected, whereas a strongly connected graph has a
directed path between any pair of nodes.

MaltParser 99

Fig. 1. Dependency graph for Czech sentence from the Prague Dependency Treebank.

In the following, we will reserve the term token node for a node that corresponds

to a token of the sentence, and we will use the symbol V+ to denote the set of

token nodes of a sentence for which the set of nodes is V , i.e., V+ = V − {0}.
When necessary, we will write Vx and V+

x to indicate that V and V+ are the nodes

corresponding to a particular sentence x = (w1, . . . , wn). Note, however, that the only

requirement imposed by x is that the number of nodes matches the length of x, i.e.,

|V+| = n and |V | = n + 1.

The set E of arcs (or edges) is a set of ordered pairs (i, j), where i and j are

nodes. Since arcs are used to represent dependency relations, we will say that i is

the head and j is the dependent of the arc (i, j). As usual, we will use the notation

i→ j to mean that there is an arc connecting i and j (i.e., (i, j) ∈ E) and we will use

the notation i→∗ j for the reflexive and transitive closure of the arc relation E (i.e.,

i→∗ j if and only if i = j or there is a path of arcs connecting i to j).

The function L assigns a dependency type (arc label) r ∈ R to every arc e ∈ E.

We will use the notation i
r→ j to mean that there is an arc labeled r connecting i

to j (i.e., (i, j) ∈ E and L((i, j)) = r).

Figure 1 shows a Czech sentence from the Prague Dependency Treebank with

a well-formed dependency graph according to Definition 1–2. Note that the use

of a special root node (0) is crucial for the satisfaction of Connectedness, since

the graph would otherwise have consisted of two connected components rooted at

nodes 3 and 8, respectively. The use of a special root node is thus a convenient way

of ensuring Connectedness, regardless of whether a particular annotation scheme

requires that a single token node should dominate all the others. More importantly,

it is a way of achieving robustness in parsing, since there will always be a single

entry point into the graph even if the parser produces fragmented output.

The only conditions so far imposed on dependency graphs is that the special node

0 be a root and that the graph be connected. Here are three further constraints that

are common in the literature:

3. Every node has at most one head, i.e., if i→ j then there is no node k such

that k �= i and k → j (Single-Head).

100 J. Nivre et al.

4. The graph G is acyclic, i.e., if i→ j then not j →∗ i (Acyclicity).

5. The graph G is projective, i.e., if i→ j then i→∗ k, for every node k such that

i < k < j or j < k < i (Projectivity).

The Single-Head constraint, together with the basic well-formedness conditions,

entails that the graph is a tree rooted at the node 0, which means that any well-

formed graph satisfying Single-Head also satisfies Acyclicity. And whereas it is

possible to require Acyclicity without Single-Head, the two conditions are jointly

assumed in almost all versions of dependency grammar, especially in computational

systems.

By contrast, Projectivity is much more controversial. Broadly speaking, we

can say that whereas most practical systems for dependency parsing do assume

projectivity, most dependency-based linguistic theories do not. More precisely, most

theoretical formulations of dependency grammar regard projectivity as the norm

but also recognize the need for non-projective representations to capture non-local

dependencies and discontinuities arising from free or flexible word order (Mel’čuk

1988; Hudson 1990). This theoretical preference for non-projective dependency

graphs is usually carried over into treebank annotation schemes, so that virtually

all treebanks annotated with dependency graphs contain non-projective structures.

This is true, for example, of the Prague Dependency Treebank of Czech (Hajič

et al. 2001), the Danish Dependency Treebank (Kromann 2003), and the Turkish

Treebank (Oflazer et al. 2003), all of which are used in this study.

2.2 Deterministic parsing algorithms

The most commonly used deterministic algorithms for dependency parsing can be

seen as variants of the basic shift-reduce algorithm, analyzing the input from left

to right using two main data structures, a queue of remaining input tokens and

a stack storing partially processed tokens. One example is the arc-eager algorithm

introduced in Nivre (2003), which is used in all the experiments in this article and

which we describe in detail in this section. Like most of the algorithms used for

practical dependency parsing, this algorithm is restricted to projective dependency

graphs. We begin by defining a parser configuration for a sentence x = (w1, . . . , wn),

relative to a set R of dependency types (including a special symbol r0 for dependents

of the root):

Definition 3

Given a set R = {r0, r1, . . . rm} of dependency types and a sentence x = (w1, . . . , wn),

a parser configuration for x is a quadruple c = (σ, τ, h, d), where:

1. σ is a stack of token nodes i (1 ≤ i ≤ j for some j ≤ n).

2. τ is a sorted sequence of token nodes i (j < i ≤ n).

3. h : V+
x → Vx is a function from token nodes to nodes.

4. d : V+
x → R is a function from token nodes to dependency types.

5. For every token node i ∈ V+
x , d(i) = r0 only if h(i) = 0.

The idea is that the sequence τ represents the remaining input tokens in a left-to-

right pass over the input sentence x; the stack σ contains partially processed nodes

MaltParser 101

that are still candidates for dependency arcs, either as heads or dependents; and

the functions h and d represent the (partially constructed) dependency graph for the

input sentence x.

Representing the graph by means of two functions in this way is possible if we

assume the Single-Head constraint. Since, for every token node j, there is at most

one arc (i, j), we can represent this arc by letting h(j) = i. Strictly speaking, h should

be a partial function, to allow the possibility that there is no arc (i, j) for a given

node j, but we will avoid this complication by assuming that every node j for

which there is no token node i such that i → j is headed by the special root node

0, i.e., h(j) = 0. Formally, we establish the connection between configurations and

dependency graphs as follows:

Definition 4

A configuration c = (σ, τ, h, d) for x = (w1, . . . , wn) defines the dependency graph

Gc = (Vx, Ec, Lc), where:

1. Ec = {(i, j) | h(j) = i}
2. Lc = {((i, j), r) | h(j) = i, d(j) = r}

We use the following notational conventions for the components of a configuration:

1. Both the stack σ and the sequence of input tokens τ will be represented as

lists, although the stack σ will have its head (or top) to the right for reasons

of perspicuity. Thus, σ|i represents a stack with top i and tail σ, while j|τ
represents a list of input tokens with head j and tail τ, and the operator | is
taken to be left-associative for the stack and right-associative for the input

list. We use ε to represent the empty list/stack.

2. For the functions h and d, we will use the notation f[x �→ y], given a specific

function f, to denote the function g such that g(x) = y and g(z) = f(z) for all

z �= x. More formally, if f(x) = y′, then f[x �→ y] = (f − {(x, y′)}) ∪ {(x, y)}.

Initial and terminal parser configurations are defined in the following way:

Definition 5

A configuration c for x = (w1, . . . , wn) is initial if and only if it has the form

c = (ε, (1, . . . , n), h0, d0), where:

1. h0(i) = 0 for every i ∈ V+
x .

2. d0(i) = r0 for every i ∈ V+
x .

A configuration c for x = (w1, . . . , wn) is terminal if and only if it has the form

c = (σ, ε, h, d) (for arbitrary σ, h and d).

In other words, we initialize the parser with an empty stack, with all the token

nodes of the sentence remaining to be processed, and with a dependency graph

where all token nodes are dependents of the special root node 0 and all arcs are

labeled with the special label r0, and we terminate whenever the list of input tokens

is empty, which happens when we have completed one left-to-right pass over the

sentence. We use C for the set of all possible configurations (relative to some set

102 J. Nivre et al.

R of dependency types) and Cn for the set of non-terminal configurations, i.e., any

configuration c = (σ, τ, h, d) where τ �= ε.

A transition is a partial function t : Cn → C . In other words, a transition maps

non-terminal configurations to new configurations but may be undefined for some

non-terminal configurations. The parsing algorithm uses four transitions, two of

which are parameterized by a dependency type r ∈ R.

Definition 6

Given a set of dependency types R, the following transitions are possible for every

r ∈ R:

1. Left-Arc(r):

(σ|i, j|τ, h, d)→ (σ, j|τ, h[i �→ j], d[i �→ r])

if h(i) = 0

2. Right-Arc(r):

(σ|i, j|τ, h, d)→ (σ|i|j, τ, h[j �→ i], d[j �→ r])

if h(j) = 0

3. Reduce:

(σ|i, τ, h, d)→ (σ, τ, h, d)

if h(i) �= 0

4. Shift:

(σ, i|τ, h, d)→ (σ|i, τ, h, d)

The transition Left-Arc(r) makes the top token i a (left) dependent of the next

token j with dependency type r, i.e., j
r→ i, and immediately pops the stack. This

transition can apply only if h(i) = 0, i.e., if the top token is previously attached

to the root 0. The node i is popped from the stack because it must be complete

with respect to left and right dependents at this point (given the assumption of

projectivity).

The transition Right-Arc(r) makes the next token j a (right) dependent of the

top token i with dependency type r, i.e., i
r→ j, and immediately pushes j onto the

stack. This transition can apply only if h(j) = 0, i.e., if the next token is previously

attached to the root 0.5 The node j is pushed onto the stack since it must be

complete with respect to its left dependents at this point, but it cannot be popped

because it may still need new dependents to the right.

The transition Reduce pops the stack. This transition can apply only if h(i) �= 0,

i.e., if the top token i is already attached to a token node. This transition is needed

for popping a node that was pushed in a Right-Arc(r) transition and which has

since found all its right dependents.

The transition Shift pushes the next token i onto the stack. This transition can

apply unconditionally as long as there are input tokens remaining. It is needed for

5 This condition is in fact superfluous, since it is impossible for the next input token to be
attached to any other node, but it is included for symmetry.

MaltParser 103

processing nodes that have their heads to the right, as well as nodes that are to

remain attached to the special root node.

The transition system just defined is nondeterministic in itself, since there is

normally more than one transition applicable to a given configuration. In order

to perform deterministic parsing, the transition system needs to be supplemented

with a mechanism for predicting the next transition at each nondeterministic choice

point, as well as choosing a dependency type r for the transitions Left-Arc(r) and

Right-Arc(r). Such a mechanism can be called an oracle (Kay 2000). Assuming that

we have an oracle o : Cn → (Cn → C), the algorithm for deterministic dependency

parsing is very simple and straightforward:

Parse(x = (w1, . . . , wn))

1 c← (ε, (1, . . . , n), h0, d0)

2 while c = (σ, τ, h, d) is not terminal

3 if σ = ε

4 c← Shift(c)

5 else

6 c← [o(c)](c)

7 G← (Vx, Ec, Lc)

8 return G

As long as the parser remains in a non-terminal configuration, it applies the Shift

transition if the stack is empty and otherwise the transition o(c) predicted by the

oracle. When a terminal configuration is reached, the dependency graph defined by

this configuration is returned.

The notion of an oracle is useful for the theoretical analysis of parsing algorithms

and allows us to show, for example, that the parsing algorithm just described derives a

well-formed projective dependency graph for any input sentence in time that is linear

in the length of the input, and that any projective dependency graph can be derived

by the algorithm (Nivre 2006). In practice, the oracle can only be approximated,

but the fundamental idea in inductive dependency parsing is that we can achieve a

good approximation using history-based feature models and discriminative machine

learning, as described in the following subsections.

An alternative to the algorithm described in this section is to use an arc-standard

strategy, more directly corresponding to the strict bottom-up processing in traditional

shift-reduce parsing. In this scheme, the Right-Arc(r) and Reduce transitions are

merged into a single transition that immediately pops the dependent in the same way

as Left-Arc(r), which means that right dependents can only be attached after they

have found all their descendants. This is the strategy used by Kudo and Matsumoto

(2002), Yamada and Matsumoto (2003) and Cheng et al. (2004), although they also

modify the algorithm by allowing multiple passes over the input. There are few

studies comparing the performance of different algorithms, but Cheng et al. (2005)

found consistently better accuracy for the arc-eager, single-pass strategy (over the

arc-standard, multi-pass algorithm) in parsing the CKIP Treebank of Chinese.

A somewhat different approach is to use the incremental algorithms described

by Covington (2001), where the stack is replaced by an open list where any token

can be linked to the next input token. This allows non-projective graphs to be

104 J. Nivre et al.

derived at the cost of making parsing time quadratic in the length of the input.

This is a technique that has not yet been evaluated on a large scale, and attempts

at recovering non-projective dependencies within this tradition have so far relied on

post-processing of projective dependency graphs, e.g., using the pseudo-projective

technique proposed by Nivre and Nilsson (2005).

2.3 History-based feature models

History-based models for natural language processing were first introduced by

Black et al. (1992) and have been used extensively for part-of-speech tagging and

syntactic parsing. The basic idea is to map each pair (x, y) of an input string x and

an analysis y to a sequence of decisions D = (d1, . . . , dn). In a generative probabilistic

model, the joint probability P (x, y) can then be expressed using the chain rule of

probabilities as follows:

P (x, y) = P (d1, . . . , dn) =

n∏
i=1

P (di | d1, . . . , di−1)(1)

The conditioning context for each di, (d1, . . . , di−1), is referred to as the history and

usually corresponds to some partially built structure. In order to get a tractable

learning problem, histories are grouped into equivalence classes by a function Φ:

P (x, y) = P (d1, . . . , dn) =

n∏
i=1

P (di |Φ(d1, . . . , di−1))(2)

Early versions of this scheme were integrated into grammar-driven systems. For

example, Black et al. (1993) used a standard PCFG but could improve parsing per-

formance considerably by using a history-based model for bottom-up construction

of leftmost derivations. In more recent developments, the history-based model has

replaced the grammar completely, as in the parsers of Collins (1997; 1999) and

Charniak (2000).

With a generative probabilistic model, the parameters that need to be estimated

are the conditional probabilities P (di |Φ(d1, . . . , di−1)), for every possible decision

di and non-equivalent history Hi = Φ(d1, . . . , di−1). With a deterministic parsing

strategy, we only need to estimate the mode of each conditional distribution, i.e.,

arg maxdi P (di |Φ(d1, . . . , di−1)). This reduces the parameter estimation problem to

that of learning a classifier, where the classes are the possible decisions of the parser,

e.g., the possible transitions of the algorithm described in the previous section.

Distinct parser histories are normally represented as sequences of attributes, so-

called feature vectors, and the function Φ, referred to as the feature model, can

therefore be defined in terms of a sequence Φ1,p = (φ1, . . . , φp) of feature functions,

where each function φi identifies some relevant feature of the history. The most

important features in dependency parsing are the attributes of input tokens, such

as their word form, part-of-speech or dependency type, and we will in fact limit

ourselves in this article to features that can be defined as simple attributes of

tokens.

MaltParser 105

Token attributes can be divided into static and dynamic attributes, where static

attributes are properties that remain constant during the parsing of a sentence.

This primarily includes the actual word form of a token, but also any kind of

annotation that is the result of preprocessing, such as part-of-speech tag, lemma,

or word sense annotation. In this article, we restrict our attention to two kinds of

static attributes, word form and part-of-speech. Given a sentence x = (w1, . . . , wn),

with part-of-speech annotation, we use w(i) and p(i) to refer to the word form and

part-of-speech, respectively, of the ith token. We will also make use of fixed-length

suffixes of word forms and write sm(w(i)) for the m-character suffix of w(i) (where

sm(w(i)) = w(i) if w(i) has length l ≤ m).

Dynamic attributes, by contrast, are attributes that are defined by the partially

built dependency graph, which in this article will be limited to the dependency type

by which a token is related to its head, given by the function d of the current parser

configuration c = (σ, τ, h, d).

To define complex history-based feature models, we need to refer to attributes of

arbitrary tokens in the parser history, represented by the current parser configuration.

For this purpose, we introduce a set of address functions.

Definition 7

Given a sentence x = (w1, . . . , wn) and a parser configuration c = (σ, τ, h, d) for x:

1. σi is the ith token from the top of the stack (starting at index 0).

2. τi is the ith token in the remaining input (starting at index 0).

3. h(i) is the head of token i in the graph defined by h.

4. l (i) is the leftmost child of token i in the graph defined by h.

5. r(i) is the rightmost child of token i in the graph defined by h.

By combining these functions, we can define arbitrarily complex functions that

identify tokens relative to a given parser configuration c. For example, while σ0

is the token on top of the stack, h(σ0) is the head of the token on top of the

stack, and l (h(σ0)) is the leftmost dependent of the head of the token on top of

the stack. It should be noted that these functions are generally partial functions on

token nodes, which means that if one of the inner functions in a chain of applica-

tions returns 0 (because h(i) = 0) or is undefined (because the stack is empty, or a

token does not have a leftmost child, etc.), then the outermost function is always

undefined.

Finally, we can now define feature functions by applying attribute functions

to complex combinations of address functions. For example, p(τ0) is the part-of-

speech of the next input token, while d(h(σ0)) is the dependency type of the head

of the token on top of the stack, which may or may not be defined in a given

configuration. Any feature function that is undefined for a given configuration,

because the complex address function fails to identify a token, is assigned a special

nil value. Feature models used for inductive dependency parsing typically combine

static part-of-speech features and lexical features (or suffix features) with dynamic

dependency type features. The kind of models used in the experiments later on are

described in section 3.2 below.

106 J. Nivre et al.

2.4 Discriminative machine learning

Given a function approximation problem with labeled training data from target

function f : X → Y , discriminative learning methods attempt to optimize the

mapping from inputs x ∈ X to outputs y ∈ Y directly, without estimating a full

generative model of the joint distribution of X and Y . Discriminatively trained

models have in recent years been shown to outperform generative models for

many problems in natural language processing, including syntactic parsing, by

directly estimating a conditional probability distribution P (Y |X) (Johnson et al.

1999; Collins 2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and

Johnson 2005). With a deterministic parsing strategy, the learning problem can

be further reduced to a pure classification problem, where the input instances are

histories (represented by feature vectors) and the output classes are parsing decisions.

Thus, the training data for the learner consists of pairs (Φ(c), t), where Φ(c) is

the representation of a parser configuration defined by the feature model Φ(c) and

t is the correct transition out of c. Such data can be generated from a treebank of

gold standard dependency graphs, by reconstructing the correct transition sequence

for each dependency graph in the treebank and extracting the appropriate feature

vectors for each configuration, as described in detail by Nivre (2006) for the parsing

algorithm discussed in section 2.2.

Although in principle any learning algorithm capable of inducing a classifier from

labeled training data can be used to solve the learning problem posed by inductive

dependency parsing, most of the work done in this area has been based on support

vector machines (SVM) and memory-based learning (MBL).6

SVM is a hyperplane classifier that relies on the maximum margin strategy

introduced by Vapnik (1995). Furthermore, it allows the use of kernel functions to

map the original feature space to a higher-dimensional space, where the classification

problem may be (more) linearly separable. In dependency parsing, SVM has been

used primarily by Matsumoto and colleagues (Kudo and Matsumoto 2002; Yamada

and Matsumoto 2003; Cheng et al. 2004; Cheng et al. 2005).

MBL is a lazy learning method, based on the idea that learning is the simple

storage of experiences in memory and that solving a new problem is achieved by

reusing solutions from similar previously solved problems (Daelemans and Van den

Bosch 2005). In essence, this is a k nearest neighbor approach to classification,

although a variety of sophisticated techniques, including different distance metrics

and feature weighting schemes can be used to improve classification accuracy. In

dependency parsing, MBL has been used primarily by Nivre and colleagues (Nivre

et al. 2004; Nivre and Scholz 2004; Nivre and Nilsson 2005), and it is also the

learning method that is used for the experiments in this article.

3 MaltParser

MaltParser is an implementation of inductive dependency parsing, as described

in the previous section, where the syntactic analysis of a sentence amounts to

6 In addition, maximum entropy modeling was used in the comparative evaluation of Cheng
et al. (2005).

MaltParser 107

the deterministic derivation of a dependency graph, and where discriminative

machine learning is used to guide the parser at nondeterministic choice points,

based on a history-based feature model. MaltParser can also be characterized as

a data-driven parser-generator. While a traditional parser-generator constructs a

parser given a grammar, a data-driven parser-generator constructs a parser given a

treebank.

The system can be run in two basic modes. In learning mode, it takes as input a

(training) set of sentences with dependency graph annotations, derives training data

by reconstructing the correct transition sequences, and trains a classifier on this data

set according to the specifications of the user. In parsing mode, it takes as input a

(test) set of sentences and a previously trained classifier and parses the sentences

using the classifier as a guide.

3.1 Parsing algorithms

MaltParser provides two main parsing algorithms, each with several options:

• The linear-time algorithm of Nivre (2003) can be run in arc-eager or arc-

standard mode. The arc-standard version is similar to but not identical to

the algorithm of Yamada and Matsumoto (2003), since the latter also uses

multiple passes over the input (Nivre 2004). In both versions, this algorithm

is limited to projective dependency graphs.

• The incremental algorithm of Covington (2001) can be run in projective or

non-projective mode. In the latter case, graphs are still guaranteed to obey

the constraints Root, Connectedness, Single-Head and Acyclicity.

The experiments reported in this article are all based on the arc-eager version of

Nivre’s algorithm.

3.2 Feature models

MaltParser allows the user to define arbitrarily complex feature models, using address

functions and attribute functions as described in section 2.3.7 The standard model

used in most of the experiments reported below combines part-of-speech features,

lexical features and dependency type features in the following way:

p(σ1) w(h(σ0)) d(l(σ0))

p(σ0) w(σ0) d(σ0)

p(τ0) w(τ0)) d(r(σ0))

p(τ1) w(τ1) d(l(τ0))

p(τ2)

p(τ3)

7 The feature models supported by MaltParser are in fact slightly more general in that
they also allow address functions that refer to siblings. This option is not exploited in
the experiments reported below and has therefore been excluded from the presentation in
section 2.3.

108 J. Nivre et al.

This model includes six part-of-speech features, defined by the part-of-speech of the

two topmost stack tokens (p(σ0), p(σ1)) and by the first four tokens of the remaining

input (p(τ0), p(τ1), p(τ2), p(τ3)). The dependency type features involve the top token

on the stack (d(σ0)), its leftmost and rightmost dependent (d(l(σ0)), d(r(σ0))), and

the leftmost child of the next input token (d(l(τ0))).
8 Finally, the standard model

includes four lexical features, defined by the word form of the top token on the

stack (w(σ0)), the head of the top token (w(h(σ0))), and the next two input tokens

(w(τ0), w(τ1)).

The standard model can be seen as the prototypical feature model used in the

experiments reported below, although the tuned models for some languages deviate

from it by adding or omitting features, or by replacing lexical features by suffix

features (the latter not being used at all in the standard model). Deviations from

the standard model are specified in table 3 below.

3.3 Learning algorithms

MaltParser provides two main learning algorithms, each with a variety of options:

• Memory-based learning (MBL) using TiMBL, a software package for memory-

based learning and classification developed by Daelemans, Van den Bosch and

colleagues at the Universities of Tilburg and Antwerp (Daelemans and Van den

Bosch 2005).

• Support vector machines (SVM) using LIBSVM, a library for SVM learning

and classification developed by Chang and Lin at National Taiwan University

(Chang and Lin 2001).

The experiments reported in this paper are all based on MBL and make crucial use

of the following features of TiMBL:

• Varying the number k of nearest neighbors

• Using the Modified Value Difference Metric (MVDM) for distances between

feature values (for values seen more than l times)

• Distance-weighted class voting for determining the majority class

The optimal values for these parameters vary for different feature models, languages

and data sets, but typical values are k = 5, MVDM down to l = 3 (with the simple

Overlap metric for lower frequencies), and class voting weighted by inverse distance

(ID). For more information about these and other TiMBL features, we refer to

Daelemans and Van den Bosch (2005).

3.4 Auxiliary tools

MaltParser is supported by a suite of freely available tools for, among other things,

parser evaluation and treebank conversion. Of special interest in this context are

8 It is worth pointing out that, given the nature of the arc-eager parsing algorithm, the
dependency type of the next input token and its rightmost child will always be undefined
at decision time (hence their omission in the standard model and all other models).

MaltParser 109

the tools for pseudo-projective dependency parsing (Nivre and Nilsson 2005). This

is a method for recovering non-projective dependencies through a combination of

data-driven projective dependency parsing and graph transformation techniques in

the following way:

1. Dependency graphs in the training data sets are transformed (if necessary) to

projective dependency graphs, by minimally moving non-projective arcs up-

wards towards the root and encoding information about these transformations

in arc labels.

2. The projective parser is trained as usual, except that the dependency graphs

in the training set are labeled with the enriched arc labels.

3. New sentences are parsed into projective dependency graphs with enriched arc

labels.

4. Dependency graphs produced by the parser are transformed (if possible) to

non-projective dependency graphs, using an inverse transformation guided by

information in the arc labels.

This methodology has been used in a few of the experiments reported below, in

particular for the parsing of Czech (section 4.2.5).

4 Experimental evaluation

In this section, we summarize experiments with the MaltParser system on data

from ten different languages: Bulgarian, Chinese, Czech, Danish, Dutch, English,

German, Italian, Swedish and Turkish.9 Although the group is dominated by Indo-

European languages, in particular Germanic languages, the languages nevertheless

represent fairly different language types, ranging from Chinese and English, with

very reduced morphology and relatively inflexible word order, to languages like

Czech and Turkish, with rich morphology and flexible word order, and with

Bulgarian, Danish, Dutch, German, Italian and Swedish somewhere in the middle.

In addition, the treebank annotation schemes used to analyze these languages differ

considerably. Whereas the treebanks for Czech, Danish, Italian and Turkish are

proper dependency treebanks, albeit couched in different theoretical frameworks,

the annotation schemes for the remaining treebanks are based on constituency

in combination with grammatical functions, which necessitates a conversion from

constituent structures to dependency structures.

Below we first describe the general methodology used to evaluate the system,

in particular the evaluation metrics used to assess parsing accuracy, and give an

overview of the different data sets and experiments performed for different languages

(section 4.1). This is followed by a presentation of the results (section 4.2), with

specific subsections for each language (section 4.2.1–4.2.10), where we also give

a more detailed description of the respective treebanks and the specific settings

9 Results have been published previously for Swedish (Nivre et al. 2004; Nivre 2006), English
(Nivre and Scholz 2004; Nivre 2006), Czech (Nivre and Nilsson 2005), Bulgarian (Marinov
and Nivre 2005), Danish (Nivre and Hall 2005) and Italian (Chanev 2005) but not for
Chinese, German and Turkish.

110 J. Nivre et al.

Table 1. Data sets. AS = Annotation scheme (C = Constituency, D = Dependency,

G = Grammatical functions); Pro = Projective; #D = Number of dependency types;

#P = Number of PoS tags; TA =Tagging accuracy; #W = Number of words; #S =

Number of sentences; SL = Mean sentence length; EM = Evaluation method (T =

Held-out test set, CVk = k-fold cross-validation)

Language AS Pro #D #P TA #W #S SL EM

Bulgarian C no 14 51 93.5 72k 5.1k 14.1 CV8

Chinese CG yes 12 35 100.0 509k 18.8k 27.1 T
Czech D no 26 28 94.1 1507k 87.9k 17.2 T
Danish D no 54 33 96.3 100k 5.5k 18.2 T
Dutch CD no 23 165 95.7 186k 13.7k 13.6 T
English CG yes 12 48 96.1 1174k 49.2k 23.8 T
German CG no 31 55 100.0 382k 22.1k 17.3 CV10

Italian D no 17 89 93.1 42k 1.5k 27.7 CV10

Swedish CG yes 17 46 95.6 98k 6.3k 15.5 T
Turkish D no 24 484 100.0 48k 5.6k 8.6 CV10

used for individual experiments, followed by a general discussion, where we bring

together the results from different languages and try to discern some general trends

(section 4.3).

4.1 Method

Table 1 gives an overview of the data sets for the ten languages. The first column

characterizes the annotation scheme and the second indicates whether the (possibly

converted) annotation is restricted to projective dependency graphs. The next two

columns contain the number of distinct dependency types and part-of-speech tags,

respectively, where the latter refers to the tagset actually used in parsing, which may

be a reduced version of the tagset used in the original treebank annotation. The

fifth column gives the mean accuracy of the part-of-speech tagging given as input to

the parser, where 100.0 indicates that experiments have been performed using gold

standard tags (i.e., manually assigned or corrected tags) rather than the output of an

automatic tagger. The next three columns give the number of tokens and sentences,

and the mean number of words per sentence. These figures refer in each case to the

complete treebank, of which at most 90% has been used for training and at least

10% for testing (possibly using k-fold cross-validation).

Table 2 gives a little more information about the syntactic analysis adopted in

the different treebank annotation schemes. Whereas all the schemes agree on basic

structures such as verbs taking their core arguments as dependents and adjuncts

being dependents of the heads they modify, there are a number of constructions

that have competing analyses with respect to their dependency structure. This

holds in particular for constructions involving function words, such as auxiliary

verbs, prepositions, determiners, and complementizers, but also for the ubiquitous

phenomenon of coordination. Table 2 shows the choices made for each of these

cases in the different treebanks, and we see that there is a fair amount of variation

MaltParser 111

Table 2. Annotation style (choice of head). VG = Verb group (Aux = Auxiliary

verb, MV = Main verb); AP = Adpositional phrase (Ad = Adposition, N = Nominal

head); NP = Noun phrase (Det = Determiner, N = Noun); SC = Subordinate clause

(Comp = Complementizer, V = Verb); Coord = Coordination (CC = Coordinating

conjunction, Conj1 = First conjunct, Conjn = Last conjunct); NA = Not applicable

Language VG AP NP SC Coord

Bulgarian MV Ad N Comp Conj1
Chinese Aux Ad N Comp Conj1/Conjn
Czech MV Ad N V CC
Danish Aux Ad Det Comp Conj1
Dutch Aux Ad N Comp CC
English Aux Ad N Comp Conj1/Conjn
German Aux Ad N V Conj1
Italian MV Ad Det Comp Conj1
Swedish Aux Ad N Comp Conj1
Turkish NA (Ad) N NA Conjn

especially with respect to verb groups and coordination.10 It is worth noting that for

Turkish, which is a richly inflected, agglutinative language, some of the distinctions

are not applicable, since the relevant construction is encoded morphologically rather

than syntactically.11 It is also important to remember that, for the treebanks that are

not originally annotated with dependency structures, the analysis adopted here only

represents one conversion out of several possible alternatives. More information

about the conversions are given for each language below.

All the experiments reported in this article have been performed with the parsing

algorithm described in Nivre (2003; 2004; 2006) and with memory-based learning

and classification as implemented in the TiMBL software package by Daelemans

and Van den Bosch (2005). A variety of feature models have been tested, but we

only report results for the optimal model for each language, which is characterized

in relation to the standard model defined in section 3.2. Standard settings for the

TiMBL learner include k = 5 (number of nearest distances), MVDM metric down

to a threshold of l = 3, and distance weighted class voting with Inverse Distance

weights (ID).

Final evaluation has been performed using either k-fold cross-validation or a

held-out test set, as shown in the last column in table 1. Evaluation on held-out data

has in turn been preceded by a tuning phase using either k-fold cross-validation

or a development test set, as described for each language below. The diversity in

evaluation methods is partly a result of practical circumstances and partly motivated

by the concern to make results comparable to previously published results for a

10 The notation Conj1/Conjn under Coord for Chinese and English signifies that coordination
is analyzed as a head-initial or head-final construction depending on whether the underlying
phrase type is head-initial (e.g., verb phrases) or head-final (e.g., noun phrases).

11 Whereas postpositions generally appear as suffixes on nouns, there are marginal cases
where they occur as separate words and are then treated as heads. Hence, the brackets
around Ad in the AP column for Turkish.

112 J. Nivre et al.

given language. Thus, while results on the Penn Treebank are customarily obtained

by training on sections 2–21 and testing on section 23 (using any of the remaining

sections as a development test set), results on the Turkish Treebank have so far been

based on ten-fold cross-validation, which is well motivated by the limited amount of

data available. It should also be noted that the amount of work devoted to model

selection and parameter optimization varies considerably between the languages,

with Swedish and English being most thoroughly investigated while the results for

other languages, notably Dutch, German and Turkish, are still preliminary and can

probably be improved substantially.

The evaluation metrics used throughout are the unlabeled attachment score ASU ,

which is the proportion of tokens that are assigned the correct head (regardless of

dependency type), and the labeled attachment score ASL, which is the proportion of

tokens that are assigned the correct head and the correct dependency type, following

the proposal of Lin (1998). All results are presented as mean scores per token, with

punctuation tokens excluded from all counts.12 For each language, we also provide

a more detailed breakdown with (unlabeled) attachment score, precision, recall and

F measure for individual dependency types.

Before we turn to the experimental results, a caveat is in order concerning

their interpretation and in particular about cross-linguistic comparability. The main

point of the experimental evaluation is to corroborate the claim that MaltParser

is language-independent enough to achieve reasonably accurate parsing for a wide

variety of languages, where the level of accuracy is related, whenever possible, to

previously obtained results for that language. In order to facilitate this kind of

comparison, we have sometimes had to sacrifice comparability between languages,

notably by using training sets of different size or different procedures for obtaining

accuracy scores as explained earlier. This means that, even though we sometimes

compare results across languages, such comparisons must be taken with a pinch

of salt. Although a more controlled cross-linguistic comparison would be very

interesting, it is also very difficult to achieve given that available resources are

very diverse with respect to standards of annotation, the amount of annotated

data available, the existence of accurate part-of-speech taggers, etc. Faced with this

diversity, we have done our best to come up with a reasonable compromise between

the conflicting requirements of ensuring cross-linguistic comparability and being

faithful to existing theoretical and practical traditions for specific languages and

treebanks. This means, for example, that we retain the original arc labels for all

treebanks, so that users of these treebanks can easily relate our results to theirs,

even though this has the consequence that, e.g., subjects will be denoted by a variety

of labels such as SUB, SBJ, SUBJ and Sb, but all arc labels will be accompanied

by descriptions that should make them understandable also for readers who are not

familiar with a given treebank annotation scheme.

12 Although punctuation tokens are excluded in the calculation of accuracy scores, they are
included during parsing. No changes have been made to the tokenization or sentence
segmentation found in the respective treebanks, except for Turkish (see section 4.2.10).

MaltParser 113

Table 3. Overview of results. Model = Best feature model (− = omitted, + = added,

→ = replaced by); Settings = TiMBL settings; ASU = Unlabeled attachment score;

ASL = Labeled attachment score

Language Model Settings ASU ASL

Bulgarian ∀a[w(a)→ s6(w(a)))] Standard 81.3 73.6
Chinese Standard k = 6, l = 8 81.1 79.2
Czech Standard Standard 80.1 72.8
Danish [w(h(σ0))→ s6(w(h(σ0)));−w(τ1)] Standard 85.6 79.5
Dutch Standard k = 10 84.7 79.2
English Standard k = 7, l = 5 88.1 86.3
German [−w(h(σ0));−w(τ1); +p(σ2)] k = 13, IL 88.1 83.4
Italian Standard Standard 82.9 75.7
Swedish Standard Standard 86.3 82.0
Turkish [−p(σ1);−p(τ2);−p(τ3);−w(h(σ0));−w(τ1)] Standard 81.6 69.0

4.2 Results

Table 3 gives an overview of the results, summarizing for each language the optimal

feature model and TiMBL parameter settings, as well as the best unlabeled and

labeled attachment scores. In the following subsections, we analyze the results for

each language in a little more detail, making state-of-the-art comparisons where

this is possible. The earliest experiments were those performed on Swedish and

English and the standard models and settings are mainly based on the results of

these experiments. It is therefore natural to treat Swedish and English first, with the

remaining languages following in alphabetical order.

4.2.1 Swedish

The Swedish data come from Talbanken (Einarsson 1976), a manually annotated

corpus of both written and spoken Swedish, created at Lund University in the

1970s. We use the professional prose section, consisting of material taken from

textbooks, newspapers and information brochures. Although the original annotation

scheme is an eclectic combination of constituent structure, dependency structure,

and topological fields (Teleman 1974), it has been possible to convert the annotated

sentences to dependency graphs with very high accuracy. In the conversion process,

we have reduced the original fine-grained classification of grammatical functions to

a more restricted set of 17 dependency types, mainly corresponding to traditional

grammatical functions such as subject, object and adverbial. We have used a pseudo-

randomized data split, dividing the data into 10 sections by allocating sentence i

to section imod 10. We have used sections 1–9 for 9-fold cross-validation during

development and section 0 for final evaluation.

The overall accuracy scores for Swedish, obtained with the standard model and

standard settings, are ASU = 86.3% and ASL = 82.0%. Table 4 gives unlabeled

attachment score (ASU), labeled precision (P), recall (R) and F measure (F) for

individual dependency types in the Swedish data. These types can be divided into

three groups according to accuracy. In the high-accuracy set, with a labeled F

114 J. Nivre et al.

Table 4. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Swedish (held-out test set, section 0)

Dependency Type n ASU P R F

Adverbial (ADV) 1607 79.8 75.8 76.8 76.3
Apposition (APP) 42 23.8 38.1 19.0 25.4
Attribute (ATT) 950 81.3 79.9 78.5 79.2
Coordination (CC) 963 82.5 78.1 79.8 78.9
Determiner (DET) 947 92.6 88.9 90.2 89.5
Idiom (ID) 254 72.0 72.5 58.3 64.6
Infinitive marker (IM) 133 98.5 98.5 98.5 98.5
Infinitive complement (INF) 10 100.0 100.0 30.0 46.2
Object (OBJ) 585 88.0 78.2 77.3 77.7
Preposition dependent (PR) 985 94.2 88.6 92.7 90.6
Predicative (PRD) 244 90.6 76.7 77.0 76.8
Root (ROOT) 607 91.3 84.6 91.3 87.8
Subject (SUB) 957 89.8 86.7 82.5 84.5
Complementizer dependent (UK) 213 85.0 89.4 83.6 86.4
Verb group (VC) 238 93.7 82.1 90.6 86.1
Other (XX) 29 82.8 85.7 20.7 33.3

Total 8764 86.3 82.0 82.0 82.0

measure from 84% to 98%, we find all dependency types where the head is

a closed class word: IM (marker → infinitive), PR (preposition → noun), UK

(complementizer → verb) and VC (auxiliary verb → main verb). We also find the

type DET (noun → determiner), which has similar characteristics although the

determiner is not treated as the head in the Swedish annotation. The high-accuracy

set also includes the central dependency types ROOT and SUB, which normally

identify the finite verb of the main clause and the grammatical subject, respectively.

In the medium-accuracy set, with a labeled F measure in the range of 75–80%,

we find the remaining major dependency types, ADV (adverbial), ATT (nominal

modifier), CC (coordination), OBJ (object) and PRD (predicative). However, this set

can be divided into two subsets, the first consisting of ADV, ATT and CC, which have

an unlabeled attachment score not much above the labeled F measure, indicating

that parsing errors are mainly due to incorrect attachment. This is plausible since

ADV and ATT are the dependency types typically involved in modifier attachment

ambiguities and since coordination is also a source of attachment ambiguities. The

second subset contains OBJ and PRD, which both have an unlabeled attachment

score close to 90%, which means that they are often correctly attached but may

be incorrectly labeled. This is again plausible, since these types identify nominal

arguments of the verb (other than the subject), which can often occur in the same

structural positions.

Finally, we have a low-accuracy set, with a labeled F measure below 70%, where

the common denominator is mainly low frequency: INF (infinitive complements),

APP (appositions), XX (unclassifiable). The only exception to this generalization is

the type ID (idiom constituent), which is not that rare but which is rather special

for other reasons. All types in this set except APP have a relatively high unlabeled

attachment score, but their labels are seldom used correctly.

MaltParser 115

Table 5. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for English (held-out test set, section 23)

Dependency Type n ASU P R F

Adjective/adverb modifier (AMOD) 2072 78.2 80.7 73.0 76.7
Other (DEP) 259 42.9 56.5 30.1 39.3
Noun modifier (NMOD) 21002 91.2 91.1 90.8 91.0
Object (OBJ) 1960 86.5 78.9 83.5 81.1
Preposition modifier (PMOD) 5593 90.2 87.7 89.5 88.6
Predicative (PRD) 832 90.0 75.9 71.8 73.8
Root (ROOT) 2401 86.4 78.8 86.4 82.4
Complementizer dependent (SBAR) 1195 86.0 87.1 85.1 86.1
Subject (SBJ) 4108 90.0 90.6 88.1 89.3
Verb group (VC) 1771 98.8 93.4 96.6 95.0
Adverbial (VMOD) 8175 80.3 76.5 77.1 76.8

Total 49368 88.1 86.3 86.3 86.3

Relating the Swedish results to the state of the art is rather difficult, since there is

no comparable evaluation reported in the literature, let alone based on the same data.

Voutilainen (2001) presents a partial and informal evaluation of a Swedish FDG

parser, based on manually checked parses of about 400 sentences from newspaper

text, and reports F measures of 95% for subjects and 92% for objects. These results

clearly indicate a higher level of accuracy than that attained in the experiments

reported here, but without knowing the details of the data selection and evaluation

procedure it is very difficult to draw any precise conclusions.

4.2.2 English

The data set used for English is the standard data set from the Wall Street Journal

section of the Penn Treebank, with sections 2–21 used for training and section 23 for

testing (with section 00 as the development test set). The data has been converted

to dependency trees using the head percolation table of Yamada and Matsumoto

(2003), and dependency type labels have been inferred using a variation of the

scheme employed by Collins (1999), which makes use of the nonterminal labels

on the head daughter, non-head daughter and parent corresponding to a given

dependency relation. However, instead of simply concatenating these labels, as in

the Collins scheme, we use a set of rules to map these complex categories onto a set

of 10 dependency types, including traditional grammatical functions such as subject,

object, etc. More details about the conversion can be found in Nivre (2006).

The best performing model for English is the standard model and the TiMBL

parameter settings deviate from the standard ones only by having a higher k value

(k = 7) and a higher threshold for MVDM (l = 5). The overall accuracy scores for

English are ASU = 88.1% and ASL = 86.3%. The relatively narrow gap between

unlabeled and labeled accuracy is probably due mainly to the coarse-grained nature

of the dependency type set and perhaps also to the fact that these labels have

been inferred automatically from phrase structure representations. Table 5 shows

the accuracy for individual dependency types in the same way as for Swedish in

116 J. Nivre et al.

table 4, and again we can divide dependency types according to accuracy into three

sets. In the high-accuracy set, with a labeled F measure from 86% to 95%, we find

SBJ (subject) and three dependency types where the head is a closed class word:

PMOD (preposition → complement/modifier), VC (auxiliary verb → main verb)

and SBAR (complementizer→ verb). In addition, this set includes the type NMOD,

which includes the noun-determiner relation as an important subtype.

In the medium-accuracy set, with a labeled F measure from 74% to 82%, we find

the types AMOD, VMOD, OBJ, PRD and ROOT. The former two dependency types

mostly cover adverbial functions, and have a labeled accuracy not too far below

their unlabeled attachment score, which is an indication that the main difficulty

lies in finding the correct head. By contrast, the argument functions OBJ and PRD

have a much better unlabeled attachment score, which shows that they are often

attached to the correct head but misclassified. This tendency is especially pronounced

for the PRD type, where the difference is more than 15 percentage points, which

can probably be explained by the fact that this type is relatively infrequent in the

annotated English data. The low-accuracy set for English only includes the default

classification DEP. The very low accuracy for this dependency type can be explained

by the fact that it is both a heterogeneous category and the least frequent dependency

type in the data.

Compared to the state of the art, the unlabeled attachment score is about 4%

lower than the best reported results, obtained with the parser of Charniak (2000) and

reported in Yamada and Matsumoto (2003).13 For the labeled attachment score, we

are not aware of any strictly comparable results, but Blaheta and Charniak (2000)

report an F measure of 98.9% for the assignment of grammatical role labels to

phrases that were correctly parsed by the parser described in Charniak (2000),

using the same data set. If null labels are excluded, the F score drops to 95.6%.

The corresponding F measures for MaltParser are 98.0% and 97.8%, treating the

default label DEP as the equivalent of a null label. The experiments are not strictly

comparable, since they involve different sets of functional categories (where only

the labels SBJ and PRD are equivalent) and one is based on phrase structure and

the other on dependency structure, but it nevertheless seems fair to conclude that

MaltParser’s labeling accuracy is close to the state of the art, even if its capacity to

derive correct structures is not.

4.2.3 Bulgarian

For the current experiments we used a subset of BulTreeBank (Simov et al. 2002),

since the complete treebank is not officially released and still under development. The

set contains 71703 words of Bulgarian text from different sources, annotated with

constituent structure. Although the annotation scheme is meant to be compatible

with the framework of HPSG, syntactic heads are not explicitly annotated, which

13 The score for the Charniak parser has been obtained by converting the output of the parser
to dependency structures using the same conversion as in our experiments, which means
that the comparison is as exact as possible. For further comparisons, see Nivre (2006).

MaltParser 117

Table 6. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Bulgarian (mean of 8-fold cross-validation, frequency counts

rounded to whole integers)

Dependency Type n ASU P R F

Adverbial (ADV) 914 67.2 59.4 51.2 55.0
Apposition (APP) 120 65.5 54.1 49.0 51.9
Attribute (ATT) 1297 79.6 74.0 75.4 74.7
Coordination (CC) 555 53.6 52.8 48.5 50.6
Determiner (DET) 259 82.9 80.2 76.5 78.3
Idiom (ID) 214 94.6 90.2 89.5 89.8
Object (OBJ) 949 85.9 66.9 70.4 68.6
Preposition dependent (PR) 1137 93.6 91.8 93.2 92.5
Predicative (PRD) 254 89.8 65.7 73.3 69.3
Root (ROOT) 635 88.7 76.8 88.7 82.3
Subject (SUBJ) 600 82.7 68.9 66.8 67.8
Complementizer dependent (UK) 418 88.1 87.5 88.7 88.1
Verb group (VC) 397 79.8 71.2 72.5 71.8

Total 7748 81.3 73.6 73.6 73.6

means that the treebank must be converted to dependency structures using the same

kind of head percolation tables and inference rules that were used for the English

data, except that for Bulgarian the converted treebank also contains non-projective

dependencies. In most cases, these involve subordinate da-clauses, where we often

find subject-to-object or object-to-object raising. In these cases, we have taken da

to be the head of the subordinate clause with the main verb dependent on da and

the raised subject or object dependent on the main verb. More details about the

conversion can be found in Marinov and Nivre (2005).

Experiments were performed with several models but the highest accuracy was

achieved with a variant of the standard model, where all lexical features are based

on suffixes of length 6, rather than the full word forms. That is, every lexical feature

w(a) (with address function a) is replaced by s6(w(a)) (cf. section 2.3). The overall

accuracy scores for Bulgarian are 81.3% (ASU) and 73.6% (ASL). Using suffixes

instead of full forms makes the data less sparse, which can be an advantage for

languages with limited amounts of data, especially if the endings of content words

can be expected to carry syntactically relevant information. The optimal suffix length

can be determined using cross-validation, and a length of 6 seems to work well for

several languages, presumably because it captures the informative endings of content

words while leaving most function words intact.

Table 6 gives accuracy, precision, recall and balanced F measures for individual

dependency types. The overall trend is the same as for Swedish and English in

that dependency relations involving function words tend to have higher accuracy

than relations holding primarily between content words. Thus, the highest ranking

dependency types with respect to the F measure are PR (preposition → noun) and

UK (complementizer → verb), together with ID (multi-word unit), which in the

Bulgarian data includes verbs taking the reflexive/possessive pronouns se and si.

Further down the list we find as expected the major verb complement types OBJ

(object) and PRD (predicative complement) but also SUBJ (subject), which has

118 J. Nivre et al.

considerably lower accuracy than the corresponding type in Swedish and English.

This is a reflection of the more flexible word order in Bulgarian.

Other dependency types that are ranked lower for Bulgarian than for the other

languages considered so far are DET (noun → determiner) and VC (auxiliary verb

← main verb). In the former case, since Bulgarian lacks free-standing determiners

like English the, this category was reserved for demonstratives (this, that, etc.), which

occurred infrequently. In the latter case, this again seems to be related to word order

properties, allowing the verbs to be separated by adverbials or even subordinate

clauses (which will also lead the parser to erroneously connect verbs that belong to

different clauses). Finally, we note that coordinate structures (CC) and adverbials

(ADV) have very low accuracy (with an F measure below 60%). For adverbials, one

possible error source is the fact that many adverbs coincide in form with the third

person singular form of adjectives.

There are no other published results for parsing Bulgarian, except for a paper

by Tanev and Mitkov (2002), who report precision and recall in the low 60s for

a rule-based parser. However, this parser has only been tested on 600 syntactic

phrases, as compared to the 5080 sentences used in the present study, so it is very

difficult to draw any conclusions about the relative quality of the parsers.

4.2.4 Chinese

The Chinese data are taken from the Penn Chinese Treebank (CTB), version 5.1

(Xue et al. 2005), and the texts are mostly from Xinhua newswire, Sinorama news

magazine and Hong Kong News. The annotation of CTB is based on a combination

of constituent structure and grammatical functions and has been converted in the

same way as the data for English and Bulgarian, with a head percolation table

created by a native speaker for the purpose of machine translation. Dependency

type labels have been inferred using an adapted version of the rules developed for

English, which is possible given that the treebank annotation scheme for CTB is

modeled after that for the English Penn Treebank. More details about the conversion

can be found in Hall (2006).

One often underestimated parameter in parser evaluation is the division of data

into training, development and evaluation sets. Levy and Manning (2003) report up

to 10% difference in parsing accuracy for different splits of CTB 2.0. We have used

the same pseudo-randomized split as for Swedish (cf. section 4.2.1), with sections

1–8 for training, section 9 for validation, and section 0 for final evaluation. The

results presented in this article are based on gold-standard word segmentation and

part-of-speech tagging.

The best performing model for Chinese is the standard one and the same goes

for TiMBL settings except that k = 6 and l = 8. Table 7 presents the unlabeled

attachment score (ASU), labeled precision (P), recall (R) and F measure (F) for

individual dependency types in the Chinese data. We see that the overall accuracy

scores for Chinese are ASU = 81.1% and ASL = 79.2%, and the difference between

labeled and unlabeled accuracy is generally very small also on the level of individual

dependency types, with a few notable exceptions. Both SBJ (subject) and VC (verb

MaltParser 119

Table 7. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Chinese (held-out test set, section 0)

Dependency Type n ASU P R F

Adjective/adverb modifier (AMOD) 1503 95.2 95.8 94.5 95.1
Other (DEP) 2999 90.5 92.4 89.5 90.9
Noun modifier (NMOD) 13046 85.4 86.3 85.2 85.7
Object (OBJ) 2802 86.0 82.8 85.3 84.0
Preposition modifier (PMOD) 1839 77.3 81.3 77.2 79.2
Predicative (PRD) 467 78.8 81.4 76.0 78.6
Root (ROOT) 1880 70.5 55.4 70.5 62.0
Complementizer dependent (SBAR) 1296 83.6 83.6 83.3 83.4
Subject (SBJ) 3242 83.2 73.3 78.5 75.8
Verb group (VC) 940 80.0 76.0 75.1 75.5
Adverbial (VMOD) 12043 72.6 71.3 68.8 70.0

Total 42057 81.1 79.2 79.2 79.2

chain) have considerably lower labeled F measure than unlabeled attachment score,

which indicates that these relations are difficult to classify correctly even if the head-

dependent relations are assigned correctly. For the special ROOT label, we find a

very low precision, which reflects fragmentation in the output (since too many tokens

remain attached to the special root node), but even the recall is substantially lower

than for any other language considered so far. This may indicate that the feature

model has not yet been properly optimized for Chinese, but it may also indicate a

problem with the arc-eager parsing strategy adopted in all the experiments.

It is rather difficult to compare results on parsing accuracy for Chinese because of

different data sets, word segmentation strategies, dependency conversion methods,

and data splits. But the unlabeled attachment score obtained in our experiments is

within 5% of the best reported results for CTB (Cheng et al. 2005).

4.2.5 Czech

The Prague Dependency Treebank (PDT) consists of 1.5M words of newspaper text,

annotated on three levels, the morphological, analytical and tectogrammatical levels

(Hajič et al. 2001). Our experiments all concern the analytical annotation, which uses

a set of 28 surface-oriented grammatical functions (Böhmová et al. 2003). Unlike the

treebanks discussed so far, PDT is a genuine dependency treebank also including

non-projective dependencies.

The best results for Czech are again based on the standard model with standard

settings, although it should be acknowledged that the sheer size of the Czech data

sets makes it hard to perform extensive optimization of feature model and learning

algorithm parameters. The experiments are based on the designated training and

development sets in the treebank distribution, with final evaluation on the separate

test set (Hajič et al. 2001).

Although less than 2% of all arcs in the training data are non-projective, they are

distributed over as many as 23% of the sentences. It follows that the configuration of

120 J. Nivre et al.

Table 8. Attachment score (ASU), precision (P), recall (R) and F measure for

selected dependency types for Czech (held-out test set, etest section)

Dependency Type n ASU P R F

Adverbial (Adv) 12948 88.0 75.3 74.2 74.7
Attribute (Atr) 36239 86.9 82.8 83.6 83.2
Subordinate conjunction (AuxC) 2055 75.9 80.5 75.8 78.1
Preposition (AuxP) 12658 72.0 73.7 71.7 72.4
Auxiliary Verb (AuxV) 1747 85.6 91.3 85.1 88.2
Rhematizer (AuxZ) 1962 76.9 70.0 73.9 71.9
Coordination node (Coord) 2716 31.4 39.0 31.0 34.5
Ellipsis handling (ExD) 2529 59.9 43.6 31.2 36.4
Object (Obj) 10480 81.6 66.5 62.6 64.5
Nominal predicate’s nominal part (Pnom) 1668 80.2 63.8 70.3 66.9
Main predicate (Pred) 2892 58.2 45.7 53.1 49.1
Root node (ROOT) 7462 77.0 61.5 77.0 68.4
Subject (Sb) 9364 79.8 68.6 69.8 69.3

Total 108128 80.1 72.8 72.8 72.8

MaltParser used for all languages, constructing only projective graphs, cannot even

in theory achieve an exact match for these sentences. To cope with non-projectivity,

the concept of pseudo-projective parsing was introduced and evaluated in Nivre and

Nilsson (2005). An overview of this approach is given in section 3.4.

Using non-projective training data, i.e., without applying any tree transformations

and encodings, the overall accuracy scores are ASU = 78.5% and ASL = 71.3%. By

simply transforming all non-projective sentences to projective, without encoding the

transformations in dependency type labels (baseline), an improvement is achieved

for both ASU = 79.1% and ASL = 72.0%. This indicates that it helps to make the

input conform to the definition of projectivity, despite the fact that the trees are

distorted and that it is not possible to recover non-projective arcs in the output of

the parser.

In Nivre and Nilsson (2005), three types of encoding schemes were evaluated

in order to recover the non-projective structure by an inverse transformation. The

encodings increase the burden on the parser, since it now also has to distinguish

between pseudo-projective arcs and the original projective arcs. The differences

between different encodings are small and not statistically significant, but all three

encodings increase both labeled and unlabeled attachment score in comparison

both to the projectivized baseline and to the use of non-projective training data (all

differences being significant beyond the 0.01 level according to McNemar’s test).

Compared to the projectivized baseline, the improvement is as high as 1 precentage

point for ASU = 80.1% and 0.8 percentage points for ASL = 72.8%.

A closer look at the 13 most frequent dependency types in table 8 reveals a

larger drop from unlabeled to labeled accuracy compared to other languages such

as English and Chinese. This is partly a result of the more fine-grained set of

dependency types for Czech, but the more flexible word order for major clause

constituents like Sb (subject) and Obj (object) is probably important as well. On

the other hand, dependents of the types AuxC (subordinate conjunction), AuxP

MaltParser 121

(preposition), AuxV (auxiliary verb) or Coord (conjunction) actually have a higher

F measure than ASU , due to higher precision. In contrast to Sb and Obj, these

dependents all come from closed word classes, which often uniquely identifies the

dependency type. In addition, it is worth noting the surprisingly low accuracy for

Coord, lower than for most other languages. This may indicate that the analysis

of coordination in PDT, treating the coordinating conjunction as the head, does

not interact well with the parsing strategy and/or feature models adopted in the

experiments.14

We are not aware of any published results for labeled accuracy, but the unlabeled

attachment score obtained is about 5% lower than the best results reported for a

single parser, using the parser of Charniak (2000), adapted for Czech, with corrective

post-processing to recover non-projective dependencies (Hall and Novák 2005).

4.2.6 Danish

The Danish experiments are based on the Danish Dependency Treebank (DDT),

which is based on a subset of the Danish PAROLE corpus and annotated according

to the theory of Discontinuous Grammar (Kromann 2003). This annotation involves

primary dependencies, capturing grammatical functions, and secondary dependencies,

capturing other relations such as co-reference. Our experiments only concern primary

dependencies, since including secondary dependencies as well would have violated

the Single-Head constraint (cf. section 2.1), but the dependency type set is still

the most fine-grained of all, with 54 distinct dependency types. The annotation is

not restricted to projective dependency graphs, and while only about 1% of all

dependencies are non-projective, the proportion of sentences that contain at least

one non-projective dependency is as high as 15%.

The treebank has been divided into training, validation and test sets using the

same pseudo-randomized splitting method described earlier for Swedish and Chinese.

The training data for the experiments have been projectivized in the same way as

the Czech data, with a similar improvement compared to the use of non-projective

training data. However, none of the encoding schemes for recovering non-projective

dependencies in the output of the parser led to any improvement in accuracy (nor

to any degradation), which is probably due to the fact that the training data for

non-projective dependencies are much more sparse than for Czech.

The best performing model for Danish is a modification of the standard model,

where the feature w(τ1) (the word form of the first lookahead token) is omitted, and

the feature w(h(σ0)) (the word form of the head of the top token) is replaced by the

suffix feature s6(w(h(σ0))). The TiMBL settings are standard. The overall accuracy

scores for Danish are ASU = 85.6% and ASL = 79.5%.15 The relatively wide gap

between unlabeled and labeled accuracy is probably due mainly to the fine-grained

14 In more recent work, Nilsson et al. (2006) have shown how parsing accuracy for
coordination in Czech can be improved by transforming the representations so that
coordinating conjunctions are not treated as heads internally.

15 The labeled attachment score is slightly lower than the one published in Nivre and Hall
(2005), where results were based on the development test set.

122 J. Nivre et al.

Table 9. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Danish, n ≥ 10 (held-out test set, section 0)

Dependency Type n ASU P R F

Elliptic modifier (<MOD>) 11 45.5 0.0 0.0 –
Root (ROOT) 554 91.2 87.5 91.2 89.3
Adjectival object (AOBJ) 17 70.6 50.0 17.6 26.0
Parenthetical apposition (APPA) 20 50.0 53.8 35.0 42.4
Restrictive apposition (APPR) 23 43.5 69.2 39.1 50.0
Adverbial object (AVOBJ) 19 78.9 30.8 21.1 25.0
Conjunct (CONJ) 399 80.7 77.4 77.4 77.4
Coordinator (COORD) 299 75.6 75.4 74.9 75.1
Direct object (DOBJ) 504 90.1 77.5 77.8 77.6
Expletive subject (EXPL) 36 100.0 89.5 94.4 91.9
Indirect object (IOBJ) 13 100.0 66.7 15.4 25.0
List item (LIST) 17 29.4 57.1 23.5 33.3
Locative object (LOBJ) 117 88.0 53.0 45.3 48.8
Modifier (MOD) 1809 77.9 70.6 71.0 70.8
Parenthetical modifier (MODP) 15 26.7 0.0 0.0 –
Modifying proper name (NAME) 13 30.8 22.2 15.4 18.2
Modifying first name (NAMEF) 96 91.7 79.8 90.6 84.9
Nominal object (NOBJ) 1831 92.6 88.5 91.6 90.0
Verbal particle (PART) 21 85.7 62.5 23.8 34.5
Prepositional object (POBJ) 501 79.6 64.4 66.7 65.5
Possessed (POSSD) 171 90.1 91.3 85.4 87.1
Predicative (PRED) 251 86.5 62.0 65.7 63.8
Quotation object (QOBJ) 37 78.4 51.9 75.7 61.6
Relative clause modification (REL) 131 59.5 62.7 56.5 59.4
Subject (SUBJ) 892 93.6 90.7 90.7 90.7
Title of person (TITLE) 19 78.9 63.6 73.7 68.3
Temporal adjunct (TOBJ) 16 50.0 62.5 31.3 41.7
Verbal object (VOBJ) 635 95.1 92.7 93.4 93.0
Direct quotation (XPL) 12 0.25 0.0 0.0 –

Total 8530 85.6 79.5 79.5 79.5

nature of the dependency type set in combination with a relatively small training

data set.

Table 9 shows the unlabeled attachment score (ASU), precision (P), recall (R)

and F measure (F) for dependency types occurring at least 10 times in the test

set. It is clear that low-frequency types (n < 100) generally have very low labeled

precision and recall, despite sometimes having a quite high unlabeled accuracy. A

striking example is indirect object (IOBJ), which has perfect unlabeled accuracy but

only 15% labeled recall. Concentrating on types that occur at least 100 times in

the test set, we see a pattern that is very similar to the one observed for the closely

related language Swedish, despite important differences in the style of annotation.

Thus, we can observe a very high accuracy (F ≥ 90) for dependencies involving

function words, notably VOBJ, which includes dependencies linking verbs to function

words (auxiliary verb → main verb, marker → infinitive, complementizer → verb),

and NOBJ, which includes dependencies linking prepositions and determiners to

nominals, but also for subjects, both normal subjects (SUBJ) and the much less

frequent expletive subjects (EXPL), and roots (ROOT). Furthermore, we see that

other arguments of the verb (DOBJ, IOBJ, LOBJ, PRED) have a high unlabeled

accuracy but (sometimes substantially) lower labeled accuracy, while the generic

MaltParser 123

adjunct type MOD has lower accuracy, both labeled and unlabeled. Finally, both

Danish and Swedish have comparatively high accuracy for coordination, which

in Danish is split into CC (conjunct → coordinator) and COORD (conjuncti →
conjuncti+1). Compared to the results for Czech, this indicates that an analysis of

coordination where a conjunct, rather than the coordinator, is treated as the head is

easier to cope with for the parser.

McDonald and Pereira (2006) report an unlabeled attachment score for primary

dependency types in DDT of 86.8%.16 However, these results are based on gold

standard part-of-speech tags, whereas our experiments use automatically assigned

tags with an accuracy rate of 96.3%. Replicating the experiment with gold standard

tags, using the same feature model and parameter settings, results in an unlabeled

attachment score of 87.3%, which indicates that MaltParser gives state-of-the-art

performance for Danish.

4.2.7 Dutch

The Dutch experiments are based on the Alpino Treebank (Beek et al. 2003). The

text material (186k non-punctuation tokens) consists primarily of two sections of

newspaper text (125k and 21k), plus two smaller segments containing questions (21k)

and (in part) manually constructed sentences for parser development and annotation

guide examples (19k). As the latter type of material is atypical, it is only used for

training purposes, whereas the smaller newspaper text section is used as held out

material for final testing.

The syntactic annotation of the Alpino Treebank is a mix of constituent structure

and dependency relations, nearly identical to the syntactic annotation of the Spoken

Dutch Corpus (Wouden et al. 2002). It was converted to a pure dependency structure

employing a head percolation table, removing secondary relations as indicated by

traces. Multi-word units, consisting of a sequence of words without any further

syntactic analysis, were concatenated into a single word using underscores. Finally,

non-projective structures were projectivized using the same baseline procedure as for

Danish (i.e., without extending the dependency type labels or attempting to recover

non-projective dependencies in the output of the parser). Since the original part-

of-speech tags in the Alpino Treebank are coarse-grained and lack any additional

feature information besides the word class, all tokens were retagged with the memory-

based tagger for Dutch (Daelemans et al. 2003).

Ten-fold cross-validation was used to manually optimize the TiMBL settings.

Experimentation confirmed that the standard settings with MVDM, no feature

weighting, and distance weighted class voting generally performs best. However,

choosing a higher value for k (k = 10) usually gives an improvement of one to

two percentage points for Dutch. The results obtained on held out data using

the standard model are ASU = 84.7% and ASL = 79.2%. The relatively large

16 It should be pointed out that McDonald and Pereira (2006) also consider secondary
dependency arcs, which are beyond the reach of MaltParser in its current configuration,
and that the result reported is actually the highest precision of their parser when restricted
to primary dependencies.

124 J. Nivre et al.

Table 10. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Dutch (held-out test set)

Dependency Type n ASU P R F

Apposition (APP) 299 73.6 78.8 71.9 75.2
Body of embedded clause (BODY) 88 85.8 83.9 84.3 84.1
Conjunct (CNJ) 997 70.0 72.8 68.6 70.6
Coordinator (CRD) 9 44.4 28.6 22.2 25.0
Determiner (DET) 3239 97.2 96.1 96.9 97.0
Closing element of circumposition (HDF) 13 53.8 70.0 53.8 60.8
Locative/directional complement (LD) 239 68.6 40.2 21.3 27.9
Measure complement (ME) 33 72.7 69.2 54.5 61.0
Modifier (MOD) 5069 78.3 71.1 73.9 72.5
Object of adjective or adverb (OBCOMP) 51 74.5 90.0 52.9 66.6
Direct object (OBJ1) 3392 90.3 86.0 86.4 86.2
Indirect object (OBJ2) 56 80.4 77.8 12.5 21.5
Prepositional complement (PC) 344 73.8 51.6 28.5 36.7
Suppletive object (POBJ1) 14 78.6 33.3 35.7 34.5
Predicative complement (PREDC) 428 79.4 65.6 56.1 60.5
Predicate modifier (PREDM) 61 65.6 54.5 9.8 16.6
Root (ROOT) 1874 82.7 70.8 82.7 76.3
Obligatory reflexive object (SE) 53 83.0 72.2 73.6 72.9
Subject (SU) 186 85.2 80.8 78.1 79.4
Suppletive subject (SUP) 19 89.5 45.0 47.4 46.2
Separable verbal particle (SVP) 259 85.3 69.6 61.8 65.5
Verbal complement (VC) 1074 89.0 80.4 85.6 82.9

Total 20263 84.7 79.2 79.2 79.2

gap between the labeled and unlabeled scores may be attributed to the relatively

fine-grained set of dependency labels. Table 10 gives unlabeled attachment score

(ASU), labeled precision (P), recall (R) and F measure (F) for individual dependency

types. We can observe a general trend towards better scores for the more frequent

dependency labels, but there are notable exceptions such as the relatively high score

for the infrequently occurring SE (reflexive object) and the low score on the more

frequent PC (prepositional complement) and LD (locative/directional complement).

As for several other languages, we can distinguish three groups with high, medium

and low F measures respectively. The high score set (F > 80%) includes the

dependency relations indicated by closed class words: DET (determiner → noun),

VC (auxiliary verb → main verb), and BODY (complementizer → verb). Somewhat

surprisingly, this group also includes OBJ1 (direct object), perhaps because this is

the second most frequent dependency relation.

The low score group (F < 60%) includes the rather infrequent suppletive

subject (SUP) and object (POBJ1). Furthermore, it involves four classes which

are canonically expressed in the form of a prepositional phrase – PC (prepositional

complement), OBJ2 (indirect object), LD (locative/directional complement) and

PREDM (predicate modifier) – and where the sometimes subtle distinction is often

of a semantic rather than a syntactic nature. The fact that coordinator (CRD) is

also in the low score group is somewhat counter-intuitive, because it is indicated

by a closed word class, normally the word en ‘and’, but the result is consistent with

MaltParser 125

the low accuracy for coordination in Czech, given that both treebanks treat the

coordinating conjunction as the head of a coordinate structure.

The remaining 11 types belong to the medium score group (60% < F < 80%),

which includes the by far most frequent class MOD (modifier). It is interesting to

note that the scores for a conceptually difficult class like APP (apposition) are still

quite good. The same goes for the potentially highly ambiguous CONJ (conjunct),

although there seems to be a trade-off here with the low scores noted for CRD

earlier.

The Alpino parser is a rule-based, HPSG-style parser that is currently the state-

of-art parser for Dutch (Bouma et al. 2001). It has an extensive and detailed lexicon

(including, e.g., subcategorization information) and a MaxEnt-based disambiguation

module. Its output is in the same format as the Alpino Treebank. We used it to

parse the held out material and converted the parse trees to dependency structures,

using exactly the same procedure as for converting the treebank, which includes

transforming non-projective to projective structures. Evaluation resulted in the scores

ASU = 93.2% and ASL = 91.2%. Clearly, there is still a substantial gap between the

two parsers. Also, the Alpino parser provides additional information, e.g., traces and

non-projective analyses, which is ignored here. Yet, given all the effort invested in

building the Alpino grammar, lexicon, and disambiguation strategy, it is interesting

to see that its performance can be approximated by a purely inductive approach

using fairly limited amounts of data.

4.2.8 German

The experiments for German are based on the Tübingen Treebank of Written

German (TüBa-D/Z) (Telljohann et al. 2005). The treebank is based on issues of the

German daily newspaper ‘die tageszeitung’ (taz) that appeared in April and May of

1999. The annotation of the treebank is constituency-based, but it is augmented by

function-argument structure on all levels, which allows a straightforward conversion

to dependencies for most phenomena. Heuristics are used only for apposition,

embedded infinitive clauses, and nominal postmodifications. Long-distance relations,

which are annotated in the constituency model via special labels, are translated into

non-projective dependencies. The set of dependency types is modeled after the one

used for the Constraint Dependency Grammar for German (Foth et al. 2004), a

manually written dependency grammar for German.

The best performing model for German modifies the standard model by omitting

the two lexical features w(h(σ0)) and w(τ1) and by adding the part-of-speech of

an additional stack token p(σ2). The TiMBL settings for German deviate from the

standard settings by using k = 13 and voting based on inverse linear weighting

(IL).

The overall accuracy scores for German are ASU = 88.1% and ASL = 83.4%.

The (unlabeled) results are comparable to results by Foth et al. (2004), who reached

89.0% accuracy when parsing the NEGRA treebank (Skut et al. 1997), another

treebank for German, which is also based on newspaper texts (but which uses a

different constituency-based annotation scheme). The labeled results are considerably

126 J. Nivre et al.

Table 11. Attachment score (ASU), precision (P), recall (R) and F measure for

selected dependency types for German (mean of 10-fold cross-validation, frequency

counts rounded to whole integers)

Dependency Type n ASU P R F

Adverbial (ADV) 2762 80.5 78.7 79.3 79.0
Determiner (DET) 4485 99.1 99.1 99.0 99.0
Genitive modifier (GenMOD) 571 79.5 59.1 66.3 62.5
Accusative Object (AccOBJ) 1466 82.4 66.6 73.4 69.8
Dative Object (DatOBJ) 219 79.0 62.4 16.4 26.0
Genitive Object (GenOBJ) 4 78.0 16.7 6.8 9.7
Predicate (PRED) 549 84.8 69.6 64.3 66.8
PP complement (PPOBJ) 399 83.1 54.7 41.6 47.3
Relative clause (RelCL) 241 54.1 56.9 52.6 54.7
Subject (SUBJ) 2931 92.0 85.7 86.3 86.0

Total 32555 88.1 83.4 83.4 83.4

higher than constituency parsing results reported for German, which reach a labeled

F measure of 75.3% when constituent nodes also include grammatical functions

(Kübler et al. 2006).

Table 11 gives unlabeled attachment scores (ASU), labeled precision (P), recall

(R), and F measure (F) for selected dependency types. The overall trends are very

similar to what we have observed for other languages, notably Germanic languages

like Swedish and Danish. For example, both determiners (DET) and adverbials

(ADV) have labeled and unlabeled accuracy at about the same level (although

considerably higher for DET than for ADV), while arguments of the verb (AccOBJ,

DatOBJ, GenOBJ, PRED and PPOBJ) have substantially better unlabeled than

labeled accuracy. One difference, compared to Danish and Swedish, is that the lower

labeled accuracy also affects subjects (SUBJ), which is probably a reflection of the

fact that German exhibits freer word order thanks to case marking. The relatively

low labeled accuracy for different case-marked arguments is also an indication that

the parser would benefit from morphological information, which is currently not

included in the German part-of-speech tags.

Contrary to expectations that, with growing data size, adding more lexical features

would improve performance, experiments with all the lexical features of the standard

model showed a decrease in performance by 1.5 percentage points. The hypothesis

that this decrease is due to data sparseness is refuted by experiments with only 2000

sentences for training, where the decrease in performance is only 7.5%. These results

are consistent with those of Dubey and Keller (2003), who found that lexicalizing

a PCFG grammar for NEGRA results in a decrease in performance, although it

should be remembered that the first two lexical features are beneficial in the case of

MaltParser.

4.2.9 Italian

The Italian treebank used in the experiments is the Turin University Treebank

(TUT) (Bosco 2004), consisting of 1500 sentences and 41771 tokens. It is balanced

MaltParser 127

Table 12. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Italian (mean of 10-fold cross-validation, frequency counts rounded

to whole integers)

Dependency Type n ASU P R F

Apposition (APPOSITION) 69 44.4 54.2 47.8 50.8
Argument (ARG) 1351 95.0 92.7 94.5 93.6
Auxiliary verb (AUX) 96 92.1 90.5 94.2 92.3
Part of expression (CONTIN) 75 86.9 78.2 54.4 64.2
Coordination (COORDINATOR) 271 66.6 63.6 63.6 63.6
Other (DEPENDENT) 1 40.0 0.0 0.0 –
Reflexive complement (EMPTYCOMPL) 15 94.5 35.7 50.0 41.7
Indirect complement (INDCOMPL) 82 85.9 70.4 47.5 56.7
Indirect object (INDOBJ) 18 81.5 33.3 33.3 33.3
Interjection (INTERJECTION) 1 20.0 0.0 0.0 –
Object (OBJ) 222 84.9 33.3 33.3 33.3
Predicative complement (PREDCOMPL) 52 78.4 54.3 37.3 44.2
Restrictive modifier (RMOD) 1013 74.3 69.5 70.2 69.8
Subject (SUBJ) 256 75.5 64.8 58.6 61.5
Root (TOP) 150 75.5 63.5 77.2 69.7
Adverbial extraction (VISITOR) 13 74.6 0.0 0.0 –

Total 3683 82.9 75.7 75.7 75.7

over genres with 60% newspaper text, 30% legal text, and 10% from novels and

academic literature. The dependency annotation involves traces in order to avoid

non-projective structures, although there is in fact a certain number of non-projective

trees in the treebank.

The treebank has been converted to the format required by MaltParser without

significant loss of linguistic information, as described in Chanev (2005), replacing

traces if necessary by (possibly non-projective) dependency arcs. The dependency

tag set was reduced from 283 to 17 distinct tags, keeping only information about

syntactic dependency relations. The training data were projectivized using the same

procedure as for Danish and Dutch and tagged for part-of-speech using TnT

(Brants 2000). All experiments were performed using 10-fold cross-validation with

a randomized split.

The best performing feature model for Italian is the standard model, although

several simpler models give nearly the same results. The accuracy scores for Italian

are ASU = 82.9% and ASL = 75.7%, and table 12 shows the accuracy obtained for

different dependency types. It is striking that there are only two types that obtain

a really high accuracy in the Italian data, the type ARG, which is usually used for

relations between articles and nouns or prepositions and articles, and the type AUX,

which is used for auxiliary verbs. While these two types have a labeled F measure

well above 90%, no other type has a score higher than 70%. There is also a set

of low-frequency types that all have zero recall and precision. The relatively low

labeled accuracy for most dependency types in Italian is undoubtedly due partly to

sparse data, but it is also relevant that the inventory of dependency types is more

semantically oriented than for most other languages.

For Italian there are not any published results for statistical dependency parsing

except the preliminary results for MaltParser reported in Chanev (2005). Compared

128 J. Nivre et al.

to Corazza et al. (2004), where state-of-the-art constituency parsers were tested on

the Italian Syntactic-Semantic Treebank (Montemagni et al. 2003), an improvement

seems to have been achieved, although it is not straightforward to compare

evaluation metrics for constituency and dependency parsing. A more relevant

comparison is the rule-based parser of Lesmo et al. (2002), which uses the TUT

dependency type set and which has been reported to achieve a labeled attachment

score of 76.65% when evaluated during the development of the treebank. Since this

is within a percentage point of the results reported in this article and the evaluation

is based on the same kind of data, it seems clear that MaltParser achieves highly

competitive results for Italian.

4.2.10 Turkish

The Turkish Treebank (Oflazer et al. 2003), created by Metu and Sabancı Universities

is used in the experiments for Turkish. This treebank is composed of 5635 sentences,

annotated with dependency structures, of which 7.2% are non-projective (not

counting punctuation that is not connected to a head). As can be seen from table 1,

even though the number of sentences in the Turkish Treebank is in the same range

as for Danish, Swedish and Bulgarian, the number of words is considerably smaller

(54k as opposed to 70–100k for the other treebanks). This significant difference

arises from the very rich morphological structure of the language due to which a

word may sometimes correspond to a whole sentence in another language.

As a result of their agglutinative morphology, Turkish words can change their

main part-of-speech after the concatenation of multiple suffixes. This structure is

represented in the treebank by dividing words into inflectional groups (IG). The

root and derived forms of a word are represented by different IGs separated from

each other by derivational boundaries (DB). Each IG is annotated with its own

part-of-speech and inflectional features, as illustrated in the following example:17

okulunuzdaydı

(he was at your school)

okulunuzda DB ydı

okul+Noun+A3sg+P2pl+Loc︸ ︷︷ ︸
IG1

DB +Verb+Zero+Past+A3sg︸ ︷︷ ︸
IG2

The part-of-speech of the stem of the word okulunuzdaydı is a noun, from which a

verb is derived in a separate IG. In the treebank, dependencies hold between specific

IGs of the dependent and head word.

For the parsing experiments, we have concatenated IGs into word forms to

get a word-based tokenization and used a reduced version of the part-of-speech

tagset given by the treebank, very similar to the reduced tagset used in the parser

of Eryiğit and Oflazer (2006). For each word, we use the part-of-speech of each

IG and in addition include the case and possessive information if the stem is a

noun or pronoun. Using this approach, the tag of the word okulunuzdaydı becomes

17 A3sg = 3sg number agreement, P2pl = 2pl possessive agreement, Loc = locative case.

MaltParser 129

Table 13. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Turkish (mean of 10-fold cross-validation, frequency counts

rounded to whole integers)

Dependency Type n ASU P R F

ABLATIVE.ADJUNCT 52 82.8 58.8 54.7 56.7
APPOSITION 190 40.6 8.5 5.9 7.0
CLASSIFIER 205 87.0 72.8 70.4 71.6
COLLOCATION 5 41.2 25.0 5.9 9.5
COORDINATION 81 53.6 56.0 48.6 52.0
DATIVE.ADJUNCT 136 86.8 55.0 54.9 54.9
DETERMINER 195 91.1 83.7 85.8 84.7
EQU.ADJUNCT 2 62.5 0.0 0.0 –
ETOL 1 70.0 0.0 0.0 –
FOCUS.PARTICLE 2 78.3 0.0 0.0 –
INSTRUMENTAL.ADJUNCT 27 71.6 34.7 18.8 24.4
INTENSIFIER 90 93.9 82.9 86.0 84.4
LOCATIVE.ADJUNCT 114 73.0 59.5 58.1 58.8
MODIFIER 1168 76.5 68.7 68.2 68.4
NEGATIVE.PARTICLE 16 90.0 89.6 80.6 84.9
OBJECT 796 88.3 68.6 69.4 69.0
POSSESSOR 152 80.0 81.7 69.9 75.3
QUESTION.PARTICLE 29 93.8 85.9 80.2 83.0
RELATIVIZER 8 91.8 54.5 49.4 51.8
ROOT 2 0.0 0.0 0.0 –
SENTENCE.MODIFIER 59 52.4 33.8 47.6 39.5
SENTENCE 725 91.2 84.4 89.2 86.7
SUBJECT 448 72.0 50.7 50.8 50.7
VOCATIVE 24 51.0 20.4 19.1 19.7

Total 4357 81.6 69.0 69.0 69.0

Noun+P2pl+Loc+Verb. Even after this reduction, the tagset contains 484 distinct

tags, making it by far the biggest tagset used in the experiments.

The best performing model for Turkish omits five of the features of the standard

model, three part-of-speech features (p(σ1), p(τ2), p(τ3)) and two lexical features

(w(h(σ0)), w(τ1)). In addition, the stem of a word is used as its word form in lexical

features. This leads to an accuracy of ASU = 81.6% and ASL = 69.0%. These are

the mean results obtained after 10-fold cross-validation.

Table 13 gives unlabeled attachment scores (ASU), labeled precision (P), recall

(R), and F measure (F) for individual dependency types. First of all, we see that

types with a frequency below 5 in the test set have very low labeled accuracy, which

is consistent with results reported for other languages earlier. Secondly, we may

note that the frequency of tokens analyzed as roots (ROOT) is very low, which is

a consequence of the fact that punctuation tokens are excluded in evaluation, since

final punctuation is generally treated as the root node of a sentence in the Turkish

Treebank.18 Therefore, the closest correspondent to ROOT for other languages

is SENTENCE, which is the type assigned to a token dependent on the final

punctuation token (normally the final verb of the sentence) and which has a very

18 The few roots that do occur are unconnected words that give rise to non-projective
dependency structures.

130 J. Nivre et al.

high accuracy, on a par with the ROOT type for most other languages. Finally,

there is a clear tendency that dependency types with high accuracy (INTENSI-

FIER, QUESTION.PARTICLE, RELATIVIZER, SENTENCE, DETERMINER,

NEGATIVE.PARTICLE) are types that are generally adjacent to their head,

whereas types with lower accuracy (COORDINATION, SENTENCE.MODIFIER,

APPOSITION, COLLOCATION, VOCATIVE) are types that are either more

distant or hard to differentiate from other types.

The only comparable results for Turkish are for the unlexicalized dependency

parser of Eryiğit and Oflazer (2006). These results are based on a selected subset

of the treebank sentences containing only projective dependencies with the heads

residing on the right side of the dependents and the main evaluation metrics are

based on IGs rather than words, but word-based scores are presented for the purpose

of comparison with a top score of ASU = 81.2%. Applying MaltParser with the

best feature model to the same subset of the treebank resulted in an unlabeled

attachment score of 84.0%, which is a substantial improvement.19

4.3 Discussion

Although MaltParser achieves an unlabeled dependency accuracy above 80% for all

languages, there is also a considerable range of variation, which seems to correlate

fairly well with the linguistic dimensions of morphological richness and word order

flexibility, exemplified by high accuracy for English and lower accuracy for Czech,

which represent extreme positions on these scales. Given that English and Czech are

also the languages with the largest data sets, the linguistic properties seem to be more

important than the amount of data available. Another influencing factor is the level

of detail of the dependency annotation, as given by the number of dependency types

used, where Czech has a more fine-grained classification than English. However,

Danish has an even more fine-grained classification but still comes out with higher

parsing accuracy than Czech, despite a much smaller training data set.

If morphological richness and word order flexibility are indeed the most important

factors determining parsing accuracy, the results for German are surprisingly good,

given that German has both richer morphology and freer word order than English.

On the other hand, the results for Chinese are on the low side. This points to another

important factor, namely the complexity of the sentences included in the treebank

data, which can be roughly approximated by considering the mean sentence length in

the sample. Here we see that Chinese has the second highest value of all languages,

while the sentence length for German is at least considerably lower than for English.

At the same time, we have to remember that the number of words per sentence is

not strictly comparable between languages with different morphological properties,

as illustrated especially by the data for Turkish (cf. section 4.2.10).

19 Strictly speaking, the subset used by Eryiğit and Oflazer (2006) only contains non-crossing
dependencies, although it does contain punctuation that is not connected to other tokens.
In order to make these graphs projective, the punctuation tokens were attached to the
immediately following word. However, since punctuation is excluded in all evaluation
scores, this nevertheless seems like a fair comparison.

MaltParser 131

Comparing individual dependency types across languages is very difficult, given the

diversity in annotation, but a few recurrent patterns are clearly discernible. The first

is that dependencies involving function words generally have the highest accuracy.

The second is that core arguments of the verb often have high unlabeled accuracy

but lower labeled accuracy, with the possible exception of subjects, which have high

labeled accuracy in languages where they are distinguished configurationally. The

third is that the parsing accuracy for coordinate structures tends to be higher if

the dependency analysis treats conjuncts, rather than coordinating conjunctions, as

heads.

Needless to say, a more detailed error analysis will be needed before we can

draw any reliable conclusions about the influence of different factors, so the

tentative conclusions advanced here are best regarded as conjectures to be cor-

roborated or refuted by future research. However, given the fact that unlabeled

dependency accuracy is consistently above 80%, the parsing methodology has

proven to be relatively insensitive to differences in language typology as well as in

annotation schemes. Moreover, respectable results can be obtained also with fairly

limited amounts of data, as illustrated in particular by the results for Italian and

Turkish.

Finally, we note that MaltParser achieves state-of-the-art performance for most

of the languages investigated in this article, although the possibility of comparison

differs widely between languages. For English, Chinese, Czech and Dutch, parsing

accuracy does not quite reach the highest level, but the difference is never more than

about 5% (slightly more for Dutch).20

5 Conclusion

We have presented MaltParser, a data-driven system for dependency parsing that

can be used to construct syntactic parsers for research purposes or for practical

language technology applications. Experimental evaluation using data from ten

different languages shows that MaltParser generally achieves good parsing accuracy

without language-specific enhancements and with fairly limited amounts of training

data. Unlabeled dependency accuracy is consistently above 80% and the best results

are normally within a 5% margin from the best performing parsers, where such

comparisons are possible. MaltParser is freely available for research and educational

purposes.

Acknowledgments

We want to express our gratitude for assistance with data sets, conversions and

many other things to Christina Bosco, Yuchang Cheng, Yuan Ding, Jan Hajič,

20 More recent work using SVM, rather than MBL, for discriminative learning has shown
that this gap can be closed, and in the recent shared task of multilingual dependency
parsing at the Tenth Conference on Computational Natural Language Learning (CoNLL-
X), MaltParser was one of the two top performing systems (Buchholz and Marsi 2006;
Nivre et al. 2006; Hall 2006).

132 J. Nivre et al.

Matthias Trautner Kromann, Alberto Lavelli, Haitao Liu, Yuji Matsumoto, Ryan

McDonald, Kemal Oflazer, Petya Osenova, Kiril Simov, Yannick Versley, Hiroyasu

Yamada, and Daniel Zeman. We are also grateful for the support of GSLT (Swedish

National Graduate School of Language Technology), TÜBİTAK (The Scientific

and Technical Research Council of Turkey), and The Swedish Research Council.

Finally, we want to thank our three anonymous reviewers for insightful comments

and suggestions that helped us improve the final version of the article.

References

Van der Beek, L., Bouma, G., Malouf, R. and Van Noord, G. 2003. The Alpino Dependency

Treebank. In Gaustad, T. (ed.) Computational Linguistics in the Netherlands 2002. Selected

Papers from the Thirteenth CLIN Meeting, pp. 8–22. Rodopi.

Berwick, R. C. 1985. The Acquisition of Syntactic Knowledge. MIT Press.

Bikel, D. and Chiang, D. 2000. Two statistical parsing models applied to the Chinese Treebank.

In Proceedings of the Second Chinese Language Processing Workshop, pp. 1–6.

Black, E. and Garside, R. and Leech, G. (eds.) 1993. Statistically-Driven Computer Grammars

of English: The IBM/Lancaster Approach. Rodopi.

Black, E., Jelinek, F., Lafferty, J., Magerman, D., Mercer, R. and Roukos, S. 1992. Towards

history-based grammars: Using richer models for probabilistic parsing. In Proceedings of

the 5th DARPA Speech and Natural Language Workshop, pp. 31–37.

Blaheta, D. and Charniak, E. 2000. Assigning function tags to parsed text. In Proceedings

of the First Meeting of the North American Chapter of the Association for Computational

Linguistics (NAACL), pp. 234–240.

Böhmová, A., Hajič, J., Hajičová, E. and Hladká, B. 2003. The Prague Dependency Treebank:

A three-level annotation scenario. In Abeillé, A. (ed.), Treebanks: Building and Using Parsed

Corpora, pp. 103–127. Dordrecht: Kluwer.

Bosco, C. 2004. A Grammatical Relation System for Treebank Annotation. PhD thesis, Turin

University.

Bouma, G., Van Noord, G. and Malouf, R. 2001. Alpino: Wide-coverage computational

analysis of Dutch. In Daelemans, W., Sima’an, K., Veenstra, J. and Zavrel, J. (eds.)

Computational Linguistics in the Netherlands 2000. Selected Papers from the Eleventh CLIN

Meeting, pp. 45-59. Rodopi.

Brants, T. 2000. TnT – a statistical part-of-speech tagger. In Proceedings of the Sixth Applied

Natural Language Processing Conference (ANLP’2000), pp. 224–231.

Buchholz, S. and Marsi, E. 2006. CoNLL-X shared task on multilingual dependency parsing.

In Proceedings of the Tenth Conference on Computational Natural Language Learning

(CoNLL), pp. 149–164.

Chanev, A. 2005. Portability of dependency parsing algorithms – an application for Italian. In

Proceedings of the Fourth Workshop on Treebanks and Linguistic Theories (TLT), pp. 29–40.

Chang, C.-C. and Lin, C.-J. 2001. LIBSVM: A library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of the First Meeting

of the North American Chapter of the Association for Computational Linguistics (NAACL),

pp. 132–139.

Charniak, E. and Johnson, M. 2005. Coarse-to-fine n-best parsing and discriminative MaxEnt

reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational

Linguistics (ACL), pp. 173–180.

Cheng, Y., Asahara, M. and Matsumoto, Y. 2004. Deterministic dependency structure analyzer

for Chinese. In Proceedings of the First International Joint Conference on Natural Language

Processing (IJCNLP), pp. 500–508.

MaltParser 133

Cheng, Y., Asahara, M. and Matsumoto, Y. 2004. Machine learning-based dependency

analyzer for Chinese. In Proceedings of International Conference on Chinese Computing

(ICCC), pp. 66–73.

Cheng, Y., Asahara, M. and Matsumoto, Y. 2005. Chinese deterministic dependency analyzer:

Examining effects of global features and root node finder. In Proceedings of the Fourth

SIGHAN Workshop on Chinese Language Processing, pp. 17–24.

Collins, M. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of

the 35th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 16–23.

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,

University of Pennsylvania.

Collins, M. 2000. Discriminative reranking for natural language parsing. In Proceedings of

the 17th International Conference on Machine Learning, pp. 175–182.

Collins, M. and Duffy, N. 2002. New ranking algorithms for parsing and tagging: Kernels over

discrete structures, and the voted perceptron. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics (ACL), pp. 263–270.

Collins, M., Hajič, J., Ramshaw, L. and Tillmann, C. 1999. A statistical parser for Czech.

In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics

(ACL), pp. 505–512.

Collins, M. and Duffy, N. 2005. Discriminative reranking for natural language parsing.

Computational Linguistics 31(1), 25–70.

Corazza, A., Lavelli, A., Satta, G. and Zanoli, R. 2004. Analyzing an Italian treebank with

state-of-the-art statistical parsers. In Proceedings of the Third Workshop on Treebanks and

Linguistic Theories (TLT), pp. 39–50.

Covington, M. A. 2001. A fundamental algorithm for dependency parsing. In Proceedings of

the 39th Annual ACM Southeast Conference, pp. 95–102.

Daelemans, W. and Van den Bosch, A. 2005. Memory-Based Language Processing. Cambridge

University Press.

Daelemans, W., Zavrel, J., Van den Bosch, A. and Van der Sloot, K. 2003. MBT: Memory

Based Tagger, version 2.0, Reference Guide. ILK Technical Report 03-13, Tilburg

University.

Dubey, A. and Keller, F. 2003. Probabilistic parsing for German using sister-

head dependencies. In Proceedings of the 41st Annual Meeting of the Association for

Computational Linguistics (ACL), pp. 96–103.

Einarsson, J. 1976. Talbankens skriftspr̊akskonkordans. Lund University, Department of

Scandinavian Languages.

Eryiğit, G. and Oflazer, K. 2006. Statistical dependency parsing of Turkish. In Proceedings

of the 11th Conference of the European Chapter of the Association for Computational

Linguistics, pp. 89–96.

Foth, K., Daum, M. and Menzel, W. 2004. A broad-coverage parser for German based

on defeasible constraints. In KONVENS 2004, Beiträge zur 7. Konferenz zur Verarbeitung

natürlicher Sprache, pp. 45–52.

Hajič, J., Vidova Hladka, B., Panevová, J., Hajičová, E., Sgall, P. and Pajas, P. 2001. Prague

Dependency Treebank 1.0. LDC, 2001T10.

Hall, J. 2006. MaltParser – An Architecture for Labeled Inductive Dependency Parsing.

Licentitate thesis, Växjö University.

Hall, K. and Novák, V. 2005. Corrective modeling for non-projective dependency parsing. In

Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), pp. 42–52.

Hudson, R. A. 1990. English Word Grammar. Blackwell.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, S. 1999. Estimators for stochastic

“unification-based” grammars. In Proceedings of the 37th Annual Meeting of the Association

for Computational Linguistics (ACL), pp. 535–541.

Kay, M. 2000. Guides and oracles for linear-time parsing. In Proceedings of the 6th

International Workshop on Parsing Technologies (IWPT), pp. 6–9.

134 J. Nivre et al.

Kromann, M. T. 2003. The Danish Dependency Treebank and the DTAG treebank tool. In

Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT), pp. 217–

220. Växjö University Press.

Kübler, S., Hinrichs, E. W. and Maier, W. 2006. Is it really that difficult to parse German?

In Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 111–119.

Kudo, T. and Matsumoto, Y. 2002. Japanese dependency analysis using cascaded chunking.

In Proceedings of the Sixth Workshop on Computational Language Learning (CoNLL),

pp. 63–69.

Lesmo, L., Lombardo, V. and Bosco, C. 2002. Treebank development: The TUT approach.

In Sangal, R. and Bendre, S. M. (eds.) Recent Advances in Natural Language Processing,

pp. 61–70. New Delhi: Vikas Publishing House.

Levy, R. and Manning, C. 2003. Is it harder to parse Chinese, or the Chinese Treebank?

In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics

(ACL), pp. 439–446.

Lin, D. 1998. A dependency-based method for evaluating broad-coverage parsers. Natural

Language Engineering 4, 97–114.

Magerman, D. M. 1995. Statistical decision-tree models for parsing. In Proceedings

of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL),

pp. 276–283.

Marinov, S. and Nivre, J. 2005. A data-driven parser for Bulgarian. In Proceedings of the

Fourth Workshop on Treebanks and Linguistic Theories (TLT), pp. 89–100.

Maruyama, H. 1990. Structural disambiguation with constraint propagation. In Proceedings

of the 28th Meeting of the Association for Computational Linguistics (ACL), pp. 31–38.

McDonald, R. and Pereira, F. 2006. Online Learning of Approximate Dependency Parsing

Algorithms. In Proceedings of the 11th Conference of the European Chapter of the

Association for Computational Linguistics (EACL), pp. 81–88.

Mel’čuk, I. 1988. Dependency Syntax: Theory and Practice. State University of New York

Press.

Montemagni, S., Barsotti, F., Battista, M., Calzolari, N., Corazzari, O., Lenci, A., Zampolli, A.,

Fanciulli, F., Massetani, M., Raffaelli, R., Basili, R., Pazienza, M. T., Saracino, D., Zanzotto,

F., Pianesi, F., Mana, N. and Delmonte, R. 2003. Building the Italian syntactic-semantic

treebank. In Anne Abeillé (ed.) Building and Using Syntactically Annotated Corpora, pp. 189–

210. Dordrecht: Kluwer.

Nilsson, J., Nivre, J. and Hall, J. 2006. Graph transformations in data-driven dependency

parsing. In Proceedings of the 21st International Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 257–264.

Nivre, J. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of the

8th International Workshop on Parsing Technologies (IWPT), pp. 149–160.

Nivre, J. 2004. Incrementality in deterministic dependency parsing. In Proceedings of the

Workshop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL),

pp. 50–57.

Nivre, J. 2006. Inductive Dependency Parsing. Springer.

Nivre, J. and Hall, J. 2005. MaltParser: A language-independent system for data-driven

dependency parsing. In Proceedings of the Fourth Workshop on Treebanks and Linguistic

Theories (TLT), pp. 137–148.

Nivre, J., Hall, J. and Nilsson, J. 2004. Memory-based dependency parsing. In Proceedings of

the 8th Conference on Computational Natural Language Learning (CoNLL), pp. 49–56.

Nivre, J., Hall, J., Nilsson, J., Eryiğit, G. and Marinov, S. 2006. Labeled pseudo-projective

dependency parsing with support vector machines. In Proceedings of the Tenth Conference

on Computational Natural Language Learning (CoNLL), pp. 221–225.

Nivre, J. and Nilsson, J. 2005. Pseudo-projective dependency parsing. In Proceedings of the

43rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 99–106.

MaltParser 135

Nivre, J. and Scholz, M. 2004. Deterministic dependency parsing of English text. In

Proceedings of the 20th International Conference on Computational Linguistics (COLING),

pp. 64–70.

Oflazer, K., Say, B., Hakkani-Tür, D. Z. and Tür, G. 2003. Building a Turkish treebank. In

Abeillé, A. (ed.) Treebanks: Building and Using Parsed Corpora, pp. 261–277. Dordrecht:

Kluwer.

Ratnaparkhi, A. 1997. A linear observed time statistical parser based on maximum entropy

models. In Proceedings of the Second Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 1–10.

Sagae, K. and Lavie, A. 2005. A classifier-based parser with linear run-time complexity. In

Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), pp. 125–

132.

Simov, K., Popova, G. and Osenova, P. 2002. HPSG-based syntactic treebank of Bulgarian

(BulTreeBank). In Wilson, A., Rayson, P. and McEnery, T. (eds), A Rainbow of Corpora:

Corpus Linguistics and the Languages of the World, pp. 135–142. Lincon-Europa.

Simmons, R. F. and Yu, Y.-H. 1992. The acquisition and use of context-dependent grammars

for English. Computational Linguistics 18, 391–418.

Skut, W., Krenn, B., Brants, T. and Uszkoreit, H. 1997. An annotation scheme for free

word order languages. In Proceedings of the Fifth Conference on Applied Natural Language

Processing (ANLP), Washington, D.C.

Tanev, H. and Mitkov, R. 2002. Shallow language processing architecture for Bulgarian. In

Proceedings of the 17th International Conference on Computational Linguistics (COLING),

pp. 995–1001.

Teleman, U. 1974. Manual för grammatisk beskrivning av talad och skriven svenska. Lund:

Studentlitteratur.

Telljohann, H., Hinrichs, E. W., Kübler, S. and Zinsmeister, H. 2005. Stylebook for the

Tübingen Treebank of Written German (TüBa-D/Z). Seminar für Sprachwissenschaft,

Universität Tübingen, Tübingen, Germany.

Titov, I. and Henderson, J. 2006. Porting statistical parsers with data-defined kernels.

In Proceedings of the Tenth Conference on Computational Natural Language Learning

(CoNLL), pp. 6–13.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer.

Veenstra, J. and Daelemans, W. 2000. A memory-based alternative for connectionist shift-

reduce parsing. Technical Report ILK-0012, University of Tilburg.

Voutilainen, A. 2001. Parsing Swedish. Extended Abstract for the 13th Nordic Conference of

Computational Linguistics, Uppsala University, May, 20-22, 2001.

Van der Wouden, T., Hoekstra, H., Moortgat, M., Renmans, B. and Schuurman, I. 2002.

Syntactic analysis in the spoken Dutch corpus. In Proceedings of the Third International

Conference on Language Resources and Evaluation, pp. 768–773.

Xue, N., Fei Xia, F.-D. and Palmer, M. 2005. The Penn Chinese Treebank: Phrase structure

annotation of a large corpus. Natural Language Engineering 11(2), 207–238.

Yamada, H. and Matsumoto, Y. 2003. Statistical dependency analysis with support vector

machines. In Proceedings of the 8th International Workshop on Parsing Technologies

(IWPT), pp. 195–206.

Zelle, J. M. and Mooney, R. J. 1993. Learning semantic grammars with constructive inductive

logic programming. In Proceedings of the Eleventh National Conference of the American

Association for Artificial Intelligence (AAAI), pp. 817–899.

Global Inference and Learning Algorithms
for Multi-Lingual Dependency Parsing

Ryan McDonald
�

University of Pennsylvania
Google Research

Fernando Pereira
���

University of Pennsylvania

Koby Crammer
���

University of Pennsylvania
Kevin Lerman

���

University of Pennsylvania

This paper gives an overview of the work of McDonald et al. (McDonald et al. 2005a, 2005b;
McDonald and Pereira 2006; McDonald et al. 2006) on global inference and learning algorithms
for data-driven dependency parsing. Further details can be found in the thesis of McDonald
(McDonald 2006). This paper is primarily intended for the audience of the ESSLLI 2007 course
on data-driven dependency parsing.

1. Introduction

In this work, we study both learning and inference algorithms for producing dependency graph
representations of natural language syntactic structure. Dependency graphs represent words and
their relationship to syntactic modifiers through directed edges. For example, Figure 1 shows a
dependency graph for the sentence, John hit the ball with the bat.

Dependency grammars and dependency parsing have a long history in both the formal lin-
guistic and computational linguistic communities. A common starting point on modern linguistic
theories of dependency representations is that of Tesnière (Tesnière 1959) which was followed by
a number of studies on dependency representations and their relationships to other formalisms,
most notably by Hays (Hays 1964) and Gaifman (Gaifman 1965). However, it would be another
quarter of a century before dependency representations of sentences became wide spread in the
computational linguistics community. Perhaps the two most well known works in this respect are
Hudson’s Word Grammar (Hudson 1984) and Mel

�

čuk’s Meaning Text Theory (Meĺčuk 1988).
Since then, a variety of computational syntactic dependency formalisms have been proposed. No-
table amongst them is the work on constraint based dependency parsing (Maruyama 1990), which
treats the parsing of dependency graphs as a constraint satisfaction problem. This framework has
been extended theoretically (Maruyama 1990; Harper and Helzerman 1995) as well as applied
in practical evaluations (Foth et al. 2000; Wang and Harper 2004), providing some of the best
empirical support for any grammar-based dependency formalism. Another important framework
is Functional Generative Description (Sgall et al. 1986), which provides the core theoretical
foundation for the Prague Dependency Treebank (Böhmová et al. 2003) – the largest dependency
treebank currently in use. Work on context-sensitive formalisms such as those in the TAG family
(Joshi 1985) or CCGs (Steedman 2000) can also be viewed as producing dependency graphs

� 76 Ninth Ave., New York, NY 10011. Email: ryanmcd@google.com
��� Department of Computer and Information Science, Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104.

Email: {pereira,crammer,klerman}@cis.upenn.edu

© 2007 Ryan McDonald

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

�������

hit

John ball with

the bat

the

������� John hit the ball with the bat

Figure 1
An example dependency graph.

������� John saw a dog yesterday which was a Yorkshire Terrier

Figure 2
A non-projective dependency graph.

of sentences through their derivation trees. However, these trees typically represent semantic
dependencies, not syntactic ones.

The example dependency graph in Figure 1 belongs to the special class of graphs that only
contain projective (also known as nested or non-crossing) edges. Assuming a unique root as
the left most word in the sentence, a projective graph is one that can be written with all words
in a predefined linear order and all edges drawn on the plane above the sentence, with no edge
crossing another. Figure 1 shows this construction for the example sentence. Equivalently, we can
say a dependency graph is projective if and only if an edge from word � to word � implies that
there exists a directed path in the graph from � to every word between � and � in the sentence.
Due to English’s rigid word order, projective graphs are sufficient to analyze most English
sentences. In fact, a large source of English dependencies is automatically generated from the
Penn Treebank (Marcus et al. 1993) and is by construction exclusively projective (Yamada
and Matsumoto 2003). However, there are certain examples in which a non-projective graph is
preferable. Consider the sentence, John saw a dog yesterday which was a Yorkshire Terrier. Here
the relative clause which was a Yorkshire Terrier and the noun it modifies (the dog) are separated
by a temporal modifier of the main verb. There is no way to draw the dependency graph for this
sentence in the plane with no crossing edges, as illustrated in Figure 2. In languages with flexible
word order, such as Czech, Dutch and German, non-projective dependencies are more frequent.
In general, rich inflection systems reduce the demands on word order for expressing grammatical
relations, leading to non-projective dependencies that we need to represent and parse efficiently.

Formally, a dependency structure for a given sentence is a directed graph originating out of
a unique and artificially inserted �
	�	
� node, which we always insert as the left most word. In the
most common case, every valid dependency graph has the following properties,

1. It is weakly connected (in the directed sense).

2. Each word has exactly one incoming edge in the graph (except the root, which has
no incoming edge).

3. There are no cycles.

2

McDonald et al. Multi-Lingual Dependency Parsing

�������

hit

John ball with

the bat

the

S

SBJ OBJ PP

NP

Figure 3
An example of a labeled dependency graph.

4. If there are � words in the sentence (including ��	�	
�), then the graph has exactly
���

�
edges.

It is easy to show that 1 and 2 imply 3, and that 2 implies 4. In particular, a dependency
graph that satisfies these constraints must be a tree. Thus we will say that dependency graphs
satisfying these properties satisfy the tree constraint, and call such graphs dependency trees. In
this work we will only address the problem of parsing dependency graphs that are trees, which is
a common constraint (Nivre 2005). McDonald and Pereira (McDonald and Pereira 2006) show
how to extend the algorithms presented here to non-tree dependency graphs.

As mentioned before, directed edges in a dependency graph represent words and their
syntactic modifiers. The word constitutes the head of the edge and the argument the modifier.
This relationship is often called the head-modifier or the governor-dependent relationship. The
head is also sometimes called the parent and the modifier is also sometimes called the child
or argument. Dependency structures can be labeled to indicate grammatical, syntactic and even
semantic properties of the head-modifier relationships in the graph. For instance, we can add
syntactic/grammatical function labels to the structure in Figure 1 to produce the graph in Figure 3.

In many cases the head-modifier relationship is easy to define. For instance, it seems clear
that both subjects and objects are modifying a verb (or sets of verbs). Similarly, adjectives
and adverbials play the obvious role of modifier. However, what about prepositions or relative
clauses? Does the preposition/complementizer govern the noun/verb? Vice-versa? The distinc-
tion between various levels of dependency representation can be beneficial here. For example,
Meaning Text Theory argues that there are essentially three layers of representation, the mor-
phological, syntactic and semantic. Similarly, the Functional Generative Description framework
assumes both syntactic and semantic layers. As a result, at the syntactic level, the preposition
would govern the noun since it is the preposition that determines the syntactic category of the
relationship with the verb. However, at the semantic level the opposite is true since it is the noun
that is filling the semantic template of the verb.

Recently, there has been a surge of interest in producing computational models for depen-
dency parsing. Relative to phrase-structure formalisms such as CFGs, TAG, LTAG, or CCGs,
dependencies can be considered a light-weight representation. As a result, they are much simpler
to represent and analyze computationally. However, dependency graphs still encode much of
the predicate-argument information relevant to many NLP problems and have been employed
in a variety of applications such as relation extraction (Culotta and Sorensen 2004), machine
translation (Ding and Palmer 2005), synonym generation (Shinyama et al. 2002) and lexical
resource augmentation (Snow et al. 2004).

3

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

Another advantage of dependency parsers is the existence of numerous large annotated
resources. The Prague Dependency Treebank (Hajič 1998; Hajič et al. 2001) contains tens of
thousands of human annotated dependency representations for Czech. The Nordic Treebank
Network1 is a group of European researchers that have developed many tools for dependency
parsing including treebanks for Danish (Kromann 2003) and Swedish (Einarsson 1976). There
are also Turkish (Oflazer et al. 2003) and Arabic (Hajič et al. 2004) dependency treebanks
available. Recently, the organizers of the shared-task at CoNLL 2006 (Buchholz et al. 2006)
standardized data sets for 13 languages: Arabic, Bulgarian, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish and Turkish (Hajič et al. 2004; Simov
et al. 2005; Simov and Osenova 2003; Chen et al. 2003; Böhmová et al. 2003; Kromann 2003;
van der Beek et al. 2002; Brants et al. 2002; Kawata and Bartels 2000; Afonso et al. 2002;
Džeroski et al. 2006; Civit Torruella and Martí Antonín 2002; Nilsson et al. 2005; Oflazer et al.
2003; Atalay et al. 2003). Furthermore, most phrase-structure treebanks typically have common
tools for converting them into dependency treebanks including both the English and Chinese
Penn treebanks (Marcus et al. 1993; Xue et al. 2004).

1.1 Data-Driven Dependency Parsing

In this work we focus on parsing models that discriminate between better and worse parses for
a given input sentence2. We assume no underlying grammar that generates the language. In fact,
one can think of our parser using a grammar that accepts the set of all possible strings. The goal of
parsing will be to search the set of all valid structures and return the structure with highest score
– it is given that the sentence under consideration should be accepted. The Collins parser (Collins
1999) is a well known model of this form. It searches the entire space of phrase-structures for a
given sentence without the use of an underlying grammar. For dependency parsing, this translates
to searching the space of projective or non-projective trees and returning the most likely one.
This form of parsing is often referred to as data-driven parsing, since parsing decisions are made
based on models trained on annotated data alone and without an underlying grammar. Note also
that this relieves us of making any of the difficult decisions about the nature of the head-modifier
relationship since we assume this information is contained implicitly in the annotated data.

The data-driven parsing framework is graphically displayed in Figure 4. First, a system
must define a learning algorithm that takes as input the training data, which is a parsed set of
sentences, and outputs a parsing model. This process of a learning algorithm producing a parsing
model from a training set is usually called training or learning. The parsing model (sometimes
simply called the model) contains the parameter settings as well as any feature specifications. The
learning algorithm is generic and will produce different parsing models when different training
data is given as input. In fact, we will show empirically that the learning algorithms presented
here are language independent. That is, if given training data in English, the learning algorithm
will produce an accurate English parsing model. Similarly, if given training data in Spanish, it
will produce an accurate Spanish parsing model.

The learned parsing model is part of the parser. The parser consists of both the model and
an inference algorithm (or parsing algorithm), which specifies how to use the model for parsing.
That is, when a new sentence � is given to the parser, the inference algorithm uses the parameter
specifications in the model to produce a syntactic representation � . For many formalisms, the
parsing model defines the inference algorithm. For example, if the model is a Probabilistic

�
http://w3.msi.vxu.se/˜nivre/research/nt.html�
In fact the parsing models discussed in this work really provide a mechanism for ranking parses.

4

McDonald et al. Multi-Lingual Dependency Parsing

Figure 4
Outline of generic syntactic parsing framework.

Context Free Grammar, then the inference algorithm will most likely by CKY (Younger 1967)
or Earley’s (Early 1968), but in principle this is not necessarily true.

1.2 Previous Work

Most recent work on producing parsers from annotated data has focused on models and learning
algorithms for phrase-structure parsing. The best phrase-structure parsing models represent
generatively the joint probability ��� ��� ��� of sentence � having the structure � (Charniak 2000;
Collins 1999). These models are easy to train because all of their parameters are simple functions
of counts of parsing events in the training set. However, they achieve that simplicity by making
strong statistical independence assumptions, and training does not optimize a criterion directly
related to parsing accuracy. Therefore, we might expect better accuracies from discriminatively
trained models that set their parameters typically by minimizing the conditional log-loss or error
rate of the model on the training data. Furthermore, discriminative models can easily handle mil-
lions of rich dependent features necessary to successfully disambiguate many natural language
phenomena – a feat that is computationally infeasible in generative models. The advantages of
discriminative learning have been exploited before, most notably in information extraction where
discriminative models represent the standard for both entity extraction (Tjong Kim Sang and
De Meulder 2003) and relation extraction (Zelenko et al. 2003). The obvious question the parsing
community has asked is, can the benefits of discriminative learning be applied to parsing?

An early work on discriminative parsing is the local decision maximum entropy model of
Ratnaparkhi (Ratnaparkhi 1999), which is trained to maximize the conditional likelihood of each
parsing decision within a shift-reduced parsing algorithm. This system performed nearly as well
as generative models of the same vintage even though it scores individual parsing decisions in
isolation and as a result it may suffer from the label bias problem (Lafferty et al. 2001). A similar
system was proposed by Henderson (Henderson 2003) that was trained using neural networks.

Only recently has any work been done on discriminatively trained parsing models that score
entire structures � for a given sentence � rather than just individual parsing decisions (Clark
and Curran 2004; Collins and Roark 2004; Riezler et al. 2002; Taskar et al. 2004). The most
likely reason for this is that discriminative training requires repeatedly reparsing the training
corpus with the current model to determine the parameter updates that will improve the training
criterion. This general description applies equally for extensions to parsing of standard dis-
criminative training techniques such as maximum entropy (Berger et al. 1996), the perceptron
algorithm (Rosenblatt 1958), or support vector machines (Boser et al. 1992), which we call here
linear parsing models because they all score a parse � for a sentence � as a weighted sum of parse
features, w � f � ��� ��� . The reparsing cost is already quite high for simple context-free models with

5

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

� � ��� � parsing complexity, but it becomes prohibitive for lexicalized grammars (Collins 1999)
with

� � ��� � parsing complexity. The prohibitive cost of training a global discriminative phrase-
structure parser results in most systems employing aggressive pruning and other heuristics to
make training tractable. Consequently, these systems have failed to convincingly outperform the
standard generative parsers of Charniak (Charniak 2000) and Collins (Collins 1999).

Another line of discriminative parsing research is parse re-ranking, which attempts to
alleviate any computational problems by taking the � -best outputs from a generative parsing
model and training a post processing ranker to distinguish the correct parse from all others. The
advantage of re-ranking is that it reduces parsing to a smaller multi-class classification problem
that allows the classifier to condition on rich features spanning the entire structure of each parse.
This approach has been applied to both the Collins parser (Collins and Duffy 2002) and the
Charniak parser (Charniak and Johnson 2005) and typically results in a

�����
relative reduction

in error.
For data-driven dependency parsing, Eisner (Eisner 1996) gave a generative model with

a cubic parsing algorithm based on a graph factorization that very much inspired the core
parsing algorithms for this work. Yamada and Matsumoto (Yamada and Matsumoto 2003)
trained support vector machines (SVM) to make parsing decisions in a shift-reduce dependency
parser for English. As in Ratnaparkhi’s parser (Ratnaparkhi 1999), the classifiers are trained on
individual decisions rather than on the overall quality of the parse. Nivre and Scholz (Nivre and
Scholz 2004) developed a memory-based learning model combined with a linear-time parser
to approximately search the space of possible parses. A significant amount of work has been
done by the researchers at Charles University led by Jan Hajič and Eva Hajičová. In addition to
developing the Prague Dependency Treebank (Hajič 1998), there has also been extensive research
on parsing Czech at that institution (Collins et al. 1999; Ribarov 2004; Zeman 2004).

One interesting class of dependency parsers are those that provide labels on edges. Two
well known parsers in this class are the link-grammar system of Sleator and Temperly (Sleator
and Temperley 1993) and the system of Lin (Lin 1998). Nivre and Scholz (Nivre and Scholz
2004) provide two systems, one a pure dependency parser and the other a labeled model that
labels edges with syntactic categories. Wang and Harper (Wang and Harper 2004) provide a
rich dependency model with complex edge labels containing an abundant amount of lexical
and syntactic information drawn from a treebank. Though we focus primarily on unlabeled
dependency graphs, we also describe simple extensions to our models that allow for the inclusion
of labels.

Previous attempts at broad coverage dependency parsing have primarily dealt with projective
constructions. In particular, the supervised approaches of Yamada and Matsumoto (Yamada and
Matsumoto 2003) and Nivre and Scholz (Nivre and Scholz 2004) have provided the previous best
results for projective dependency parsing. Another source of dependency parsers are lexicalized
phrase-structure parsers with the ability to output dependency information (Charniak 2000;
Collins 1999; Yamada and Matsumoto 2003). These systems are based on finding phrase struc-
ture through nested chart parsing algorithms and cannot model non-projective edges tractably.
However, Yamada and Matsumoto (Yamada and Matsumoto 2003) showed that these models are
still very powerful since they consider much more information when making decisions then pure
dependency parsers.

For non-projective dependency parsing, tractable inference algorithms have been given by
Tapanainen and Järvinen (Tapanainen and Järvinen 1997) and Kahane et al. (Kahane et al. 1998).
Nivre and Nilsson (Nivre and Nilsson 2005) presented a broad-coverage parsing model that
allows for the introduction of non-projective edges into dependency trees through learned edge
transformations within their memory-based parser. They test this system on Czech and show an
improvement over a pure projective parser. Another broad coverage non-projective parser is that

6

McDonald et al. Multi-Lingual Dependency Parsing

of Wang and Harper (Wang and Harper 2004) for English, which presents very good results using
a constraint dependency grammar framework that is rich in lexical and syntactic information. One
aspect of previous attempts at non-projective parsing is that inference algorithms are typically
approximate. A commonly cited result is the proof by Neuhaus and Bröker (Neuhaus and Böker
1997) that non-projective parsing is NP-hard. However, this result assumes the existence of a
particular grammar generating the language. In this study we are working within the data driven
framework and we will show that this theoretical result does not apply.

The present work is closely related to that of Hirakawa (Hirakawa 2001) who, like us,
relates the problem of dependency parsing to finding spanning trees for Japanese text. However,
that parsing algorithm uses branch and bound techniques due to non-local parsing constraints
and is still in the worst case exponential (though in small scale experiments seems tractable).
Furthermore, no justification was provided for the empirical adequacy of equating spanning trees
with dependency trees.

The closely related research of Ribarov (Ribarov 2004) was developed independently of this
work. In that work, Ribarov also equates the problem of dependency parsing to finding maximum
spanning trees in directed graphs. Furthermore, the learning model employed is the perceptron
algorithm (Rosenblatt 1958), which is a learning algorithm related to the framework presented in
Section 2. However, Ribarov’s empirical evaluation on the Prague Dependency Treebank (Hajič
1998) results in an accuracy well below the state-of-the-art. This is most likely due to a very
impoverished feature representation that focuses primarily on aspects of the complex Czech
morphology and does not consider lexical or contextual information. We also generalize the
dependency parsing as maximum spanning tree framework and consider trees with larger (and
possibly intractable) feature contexts as well as apply the resulting parser to new domains and in
real world applications.

2. Large-Margin Online Learning

In this section we present the learning algorithms that we will use for the rest of this work. One
crucial property of these learning algorithms is that they are inference based, that is, to create
trained models they only require the ability to find the highest scoring output given an input.
This will be exploited throughout this work.

2.1 Structured Classification

Structured classification is a subfield of machine learning that develops theory and algorithms
for learning how to label inputs with non-atomic outputs such as sequences and trees. After
the introduction of conditional random fields (CRFs) (Lafferty et al. 2001), several researchers
developed margin-based learning alternatives, in particular maximum margin Markov networks
(M � Ns) (Taskar et al. 2003) and the related methods of Tsochantaridis et al. (Tsochantaridis et
al. 2004). These algorithms have proven successful in several real world applications including
sequential classification (McCallum 2003; McDonald and Pereira 2005; Sha and Pereira 2003;
Taskar et al. 2003), image labeling (He et al. 2004), natural language parsing (Taskar et al. 2004;
Tsochantaridis et al. 2004) and Web page classification (Taskar et al. 2003). All of these methods
are in theory batch learning algorithms, in which the training objective is optimized with respect
to all training instances simultaneously. In practice, however, the large-margin methods are often
adapted to optimize with respect to a small number of instances at a time in order to handle large
training sets.

This work focuses on purely online learning techniques. Unlike batch algorithms, online
algorithms consider only one training instance at a time when optimizing parameters. This
restriction to single-instance optimization might be seen as a weakness, since the algorithm uses

7

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

less information about the objective function and constraints than batch algorithms. However,
we will argue that this potential weakness is balanced by the simplicity of online learning,
which allows for more streamlined training methods. We focus here on variants of the perceptron
algorithm (Rosenblatt 1958), which inherit its conceptual and mathematical simplicity and scale
up to large problems much better than batch algorithms.

Online learning with perceptron-style algorithms has recently gained popularity due to
the work of Collins (Collins 2002), who uses an approximation to the voted perceptron algo-
rithm (Freund and Schapire 1999), called here the averaged perceptron algorithm, for sequential
classification problems. This method has since been successfully adapted to parsing (Collins and
Roark 2004), language modeling (Roark et al. 2004) and more recently word alignment (Moore
2005). Perceptron-based approaches have gained a wide acceptance since they reduce learning
to inference and they routinely provide state-of-the-art performance.

One problem with the perceptron algorithm is that it does not optimize any notion of
classification margin, which is widely accepted to reduce generalization error (Boser et al. 1992).
As a result, ad-hoc approximations such as parameter averaging are required. Here, we propose
a large-margin online algorithm that generalizes the multi-class classification algorithm MIRA
(Margin Infused Relaxed Algorithm (Crammer et al. 2003; Crammer and Singer 2003; Crammer
et al. 2006)) to structured outputs, which in essence is a large-margin perceptron variant. The
generalization is achieved by using � -best structural decoding to approximate the large-margin
updates of MIRA.

2.2 Online Learning

First, we define a linear score function for input/output pairs,

� � ��� ����� w � f � ��� � �

where f � ��� ��� is a high dimensional feature representation of input � and output � and w is a
corresponding weight vector. The goal will be to learn w so that correct outputs are given a high
score and incorrect outputs a low score. As usual for supervised learning, we assume a training
set

� ��� � ��� � ��� �
	����
�� , consisting of pairs of an input ��� and its correct output ��� . Though these
algorithms work for a variety of outputs, we focus on the case when the output space is the set
of dependency parses for a given input sentence � .

In this work we focus on online-learning algorithms that are instances of the algorithm
schema in Figure 5. A single training instance is examined at each iteration, and the weight vector
is updated by an algorithm-specific rule. The auxiliary vector v accumulates the successive values
of of w, so that the final weight vector is the average of the weight vectors after each iteration.
This averaging effect has been shown to help reduce overfitting (Collins 2002).

In what follows, parses � � � denotes the set of possible dependency parses for sentence � ,
and best � � ��� w ��� parses � � � denotes the set of � highest scoring parses relative to the weight
vector w.

2.3 Margin Infused Relaxed Algorithm (MIRA)

Crammer and Singer (Crammer and Singer 2001) present a natural approach to large-margin
multi-class classification, which was later extended by Taskar et al. (Taskar et al. 2003) to

8

McDonald et al. Multi-Lingual Dependency Parsing

Training data: ���������
	���
�	������	����
1. w ���������! v ���" $#����
2. for %'&)(+*,* -
3. for � &.(+*/* 0
4. w �,132 � ��� update w �,14� according to instance ���
	5�5
�	5�
5. v � v 6 w �,142 � �
6. #7��#86�(
7. w � v 9!��-;:$0<�
Figure 5
Generic online learning algorithm.

structured classification:

=?>3@BA w A
s.t. � � ��� ��� � � � ��� �

� �<CED � � � �
� �F � ��� ���<G � � �

� G parses � � �

where D � � � �
� � is a real-valued loss for the parse �

�

relative to the correct parse � . Informally,
this minimizes the norm of the weight vector subject to margin constraints that keep the score
of the correct parse above the score of each incorrect one by an amount given by the loss of the
incorrect parse.

The Margin Infused Relaxed Algorithm (MIRA) (Crammer et al. 2003; Crammer and Singer
2003; Crammer et al. 2006) employs this optimization directly within the online framework. On
each update, MIRA attempts to keep the new weight vector as close as possible to the old weight
vector, subject to correctly parsing the instance under consideration with a margin given by the
loss of the incorrect parses. This can be formalized by substituting the following update into lineH

of the generic online algorithm from Figure 5,

w I4J4K ��L �NM!OQP =R>3@ w* SS w* � w I4J L SSsuch that � � � � � � � � � � � � � � �
� �TCUD � � � � �

� � , with respect to w*F
�
� G parses � � � �

(1)

This update attempts to minimize the change made to the weight vector subject to the set of
margin constraints for the instance under consideration. This quadratic programming problem
(QP) can be solved using Hildreth’s algorithm (Censor and Zenios 1997). Crammer and Singer
(Crammer and Singer 2003) and Crammer et al. (Crammer et al. 2003, 2006) provide an analysis
of both the online generalization error and convergence properties of MIRA.

For the dependency parsing problem, we defined the loss of a graph to be the number of
words with incorrect incoming edges relative to the correct parse. This is closely related to the
Hamming loss that is often used for sequences (Taskar et al. 2003). For instance, consider the
correct graph in Figure 1 versus the incorrect one in Figure 6. The loss of the incorrect graph
relative to the correct one is 2 since with and bat are both incorrectly labeled as modifiers of ball.
Note that this definition assumes dependency graphs are always trees. This is just one possible
definition of the loss. Other possibilities are the 0-1 loss (Taskar 2004) or another more linguis-
tically motivated loss that penalizes some errors (say conjunction and preposition dependencies)
over others. We use Hamming loss primarily since standard evaluation of dependency parsers is
based on the percentage of words that modify the correct head in the graph.

To use MIRA for structured classification, we follow the common method of equating
structure prediction to multi-class classification, where each structure is a possible class for

9

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

�������

hit

John ball

the with bat

the

Figure 6
An example incorrect dependency parse relative to that in Figure 1. The loss of this parse is 2 since with
and bat are incorrectly identified as modifiers of ball.

a sentence. As a result we inherit all the theoretical properties of multi-class classification
algorithms. The primary problem with this view is that for arbitrary inputs there are typically
exponentially many possible classes and thus exponentially many margin constraints, which is
the case for dependency parsing.

One solution for the exponential blow-up in number of classes is to relax the optimization by
using only the margin constraints for the � parses � with the highest scores � � ��� � � . The resulting
online update (to be inserted in Figure 5, line 4) would then be:

w I4J4K ��L � M!OQP =?>3@ w* SS w* � w I4J L SSsuch that � � � � � � � � � � � � � � �
� �<CED � � � � �

� � , with respect to w*F
�
� G best � � � � � w I4J L �

We call this algorithm � -best MIRA. Throughout the rest of this document all experimental results
for MIRA will be with

�
-best MIRA unless stated otherwise.

This formulation of large-margin learning for structured outputs is highly related to that of
Tsochantaridis et al. (Tsochantaridis et al. 2004). In that work a learning algorithm repeatedly
runs inference over training examples to create a growing set of constraints. Parameter optimiza-
tion is then run over all collected constraints. Since this optimization incorporates constraints
from all the instances in training, it is primarily a batch learning algorithm. However, since the
method used to collect the constraints is essentially online, one can consider it a hybrid.

Another solution to the exponetial set of margin contraints is to factor these constraints
relative to the structure of the output to produce an equivalent polynomial sized set of constraints.
Taskar et al. (Taskar et al. 2003, 2004) showed that this can be done for both sequences and
phrase-structure trees, providing that the loss function can also factor relative to the structure of
the output. The advantage of this approach is that it provides an exact solution to the QP given
by Equation (1). Even though the resulting set of constraints is still polynomial, it is typically
linear or squared in the length of the input and can lead to large QP problems. For these reason
we restrict ourselves to � -best MIRA solutions.

3. Dependency Parsing Inference as the Maximum Spanning Tree Problem

In this section we translate the problem of dependency parsing into that of finding maximum
spanning trees for directed graphs. This formulation provides a unified theoretical framework for
discussing the algorithmic properties of inference in projective and non-projective parsing.

In what follows, � � � � � � � ��� represents a generic input sentence, and � represents a
generic dependency tree for sentence � . Seeing � as the set of tree edges, we write � � ��� �<G � if
there is a dependency in � from word �

J to word ��� .

10

McDonald et al. Multi-Lingual Dependency Parsing

We follow a common method of factoring the score of a dependency tree as the sum of the
scores of all edges in the tree. In particular, we define the score of an edge to be the dot product
between a high dimensional feature representation of the edge and a weight vector,

� � � ��� ��� w � f � � � � �

Thus one can view the score of a dependency tree � for sentence � as,

� � ��� � ��� w � f � ��� ����� w �
�
I4J�� � L����

f � � � � ���
�
I4J�� � L����

w � f � � ��� ���
�
I4J�� � L	�
�

� � � ��� �

Assuming an appropriate feature representation as well as a weight vector w, dependency parsing
is the task of finding the dependency tree � with highest score for a given sentence � . This is true
for learning as well since we focus on an inference based online learning framework (Section 2).
We should note that the feature representation f � � ��� � can also include arbitrary features on the
sentence � since it always fixed as input. To indicate this fact, a more appropriate representation
of the feature function would be f � ��� � ��� � . However, for notational simplicity we will just define
f � � ��� ��� f � ��� � � � � .

Consider a directed graph � � ��� ��
 � in which each edge � � � � � (where � J ��� � G��) has a
score � � � � � � . Since � is directed, � � � � � � is not symmetric. The maximum spanning tree (MST) of
� is the tree � that maximizes the value � I4J�� � L	�
� � �

� ��� � , such that � � ��� �<G�
 and every vertex
in � is used in the construction of � . The maximum projective spanning tree of � is constructed
similarly except that it can only contain projective edges relative to some linear ordering on the
vertices of � . The MST problem for directed graphs is also known as the � -arborescence or
maximum branching problem (Tarjan 1977).

For each sentence � we can define a directed graph ��� � ����� ��
�� � where

��� � � ��� � root � � � ������� � � � 	

�� � � � � � � ��� � J �� � � � � J G!��� � ��� G���� � root 	

That is, � � is a graph where all the words and the dummy root symbol are vertices and there is a
directed edge between every pair of words and from the root symbol to every word. It is clear that
dependency trees for � and spanning trees for ��� coincide. By definition, a spanning tree of � is
a sub-graph � �

with nodes � � �"� and edges
 � �#
 , such that � �

is weakly connected and all
the nodes in � �

have an in-degree of exactly
�

except the unique root node with in-degree
�
. This

definition is equivalent to being a dependency graph satisfying the tree constraint (Section 1).
Hence, finding the (projective) dependency tree of highest score is equivalent to finding the
maximum (projective) spanning tree in � � rooted at the artificial root. Thus by factoring the
score of the tree into the sum of edge scores we have made dependency parsing equivalent with
finding maximum spanning trees.

Throughout this work we will refer to this particular spanning tree formulation as the first-
order spanning tree problem (or first-order dependency parsing problem). This is because the
score factors as a sum of individual edge scores. Of course, we can factor the score of the tree
any way we wish, though not all factorizations lead to efficient parsing algorithms.

In the analysis that follows, we make the assumption that calculating � � � � � � is
� � � � . In

fact, this is slightly misleading since w and f typically have a dimension in the millions. As
usual, sparse vector representations are used to reduce the calculation to linear in the number of
features that are active for a given edge. We can view this calculation as some form of grammar
constant, which is a common notion for most parsing formalisms. This constant is typically very

11

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

��� ��� ��� ��� �
� ��� ����� �

+ � ��� ��� �

� ��	� ��� ��� �
� �	� ��� ��� ��� �

� ����

� ��� ��� �
Figure 7
Cubic parsing algorithm of Eisner.

small (roughly
� � �

), especially when compared to grammar constants in phrase-based models,
which can be on the order of tens of thousands when extracted from a large treebank.

3.1 Projective Parsing Algorithms

Using a slightly modified version of the CKY (Younger 1967) chart parsing algorithm, it is
possible to generate and represent all projective dependency trees in a forest that is

� � � � � in
size and takes

� � � � � time to create, which is equivalent to context-free phrase-structure parsing.
However, Eisner (Eisner 1996) made the observation that if one keeps the head of each chart item
to either the left or right periphery of that item, then it is possible to parse in

� � � � � . The idea
is to parse the left and right dependents of a word independently, and combine them at a later
stage. This removes the need for the additional head indices of the

� � � � � algorithm and requires
only two additional binary variables that specify the direction of the item (either gathering left
dependents or gathering right dependents) and whether an item is complete (available to gather
more dependents). Figure 7 illustrates the algorithm. We use � , � and � for the start and end
indices of chart items, and

 � and

��

for the indices of the heads of chart items. In the first
step, all items are complete, which is represented by each right angle triangle. The algorithm
then creates an incomplete item from the words

 � to

��

with

 � as the head of

�
. This item

is eventually completed at a later stage. As with normal CKY parsing, larger items are created
from pairs of smaller items in a bottom-up fashion.

It is relatively easy to augment this algorithm so that each chart item also stores the score
of the best possible subtree that gave rise to the item. This augmentation is identical to those
used for the standard CKY algorithms. We must also store back pointers so that it is possible to
reconstruct the best tree from the chart item that spans the entire sentence.

In more detail, let ��� ��� � � � � � � � � � be a dynamic programming table that stores the score of the
best subtree from position � to position � , ��� � , with direction � and complete value � . The
variable �'G ��� ��� 	 indicates the direction of the subtree (gathering left or right dependents).
If � ��� then � must be the head of the subtree and if � ��� then � is the head. The variable � G
� � � � 	 indicates if a subtree is complete (� � � , no more dependents) or incomplete (� � �

, needs
to be completed). For instance, ��� ��� � � � � � � � � � would be the score of the best subtree represented
by the item,

� �

12

McDonald et al. Multi-Lingual Dependency Parsing

Initialization: ��� ����� ����� �	���
�� � �!* � �
� ���8��

for � &.(+*/* %

for �<&.(+*,* %
� ���
6��
if ��� % then break

% First: create incomplete items
��� ����� � ��� ����� ��� ��������� �"!�# 	 ����� ����� � ��� $����,(��.6%��� � 6�(���� � ��� ������(��)6%��� � ��� �5� (*)
��� ����� � ��� $���� ��� ������� � �"!�# 	 ����� ����� � ��� $����,(��.6%��� � 6�(���� � ��� ������(��)6%����� � � �5�

% Second: create complete items
��� ����� � ��� ������(�� ������� � �"!�# 	 ����� ����� � ��� �����,(��.6%��� � ��� � ��� ���&� �'� �
��� ����� � ��� $�����(�� ������� �(#)!(� 	 ����� ����� � ��� $���� �'�.6%��� � ��� � ��� $��&��(�� �

end for
end for

Figure 8
Pseudo-code for bottom-up Eisner cubic parsing algorithm.

and ��� ��� � � � � � � � � � for the following item,

� �

The Eisner algorithm fills in the dynamic programming table bottom-up just like the CKY parsing
algorithm (Younger 1967) by finding optimal subtrees for substrings of increasing increasing
length. Pseudo code for filling up the dynamic programming table is in Figure 8.

Consider the line in Figure 8 indicated by (*). This says that to find the best score for an
incomplete left subtree

� �

we need to find the index ��� �+* � that leads to the best possible score through joining two
complete subtrees,

� � � +
�

�

The score of joining these two complete subtrees is the score of these subtrees plus the score
of creating an edge from word � � to word � � . This is guaranteed to be the score of the best
subtree provided the table correctly stores the scores of all smaller subtrees. This is because by
enumerating over all values of � , we are considering all possible combinations.

By forcing a unique root at the left-hand side of the sentence, the score of the best tree for
the entire sentence is ��� � � � � � � � � � � � . This can be shown easily by structural induction using the

13

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

Chu-Liu-Edmonds I�� � � L
Graph �
 I � � � L
Edge weight function ��� ���	�

1. Let

�� I�
��	��
 L �
 � � ��
��
���������������� � I�
 � ��
 L��
2. Let �!
 I � �
 L
3. If �! has no cycles, then it is an MST: return �"
4. Otherwise, find a cycle # in �
5. Let $ �"% �'&���(*),+
 contract I�� � # � � L
6. Let �
 Chu-Liu-Edmonds I-�!% � � L
7. Find vertex
 � #

such that I�
 � �'& L � � and (*) I-
 � ��& L

8. Find edge I�
 � � ��
 L � #
9. Find all edges I-&���
 � � � L � �

10. ��
���.!� I�(*) I/&��0
 � � � L ��
 � � � L���1�24365 ��� � � 748�9. # ."� I-
 � ��
 L��;:<� I�
 � � ��
 L��
11. Remove all vertices and edges in � containing &
12. return �

contract I��
 I � � � L � # � � L
1. Let �"% be the subgraph of � excluding nodes in #
2. Add a node & to �!% representing cycle #
3. For
 � � : # �>= � � 8 % I�
 � ��
 L � �Add edge I-&���
 L to �!% with

(*) I-&���
 L
?�>���@�����A��� 8 % � I-
 � ��
 L
 �
 (*) I/&��0
 L� I-&���
 L
 � I�
 � ��
 L
4. For
 � � : # �>= � � 8 % I�
 ��
 � L � �Add edge I�
 ��& L to �!% with

(*) I�
 ��& L
?�>���@�����A� � 8 %
B � I�
 ��
 � LC: � I-)�I�
 � L �0
 � L/D
 �
 (*) I-
 ��& L� I�
 ��& L
 B � I�
 ��
 � LE: � I-) I�
 � L ��
 � L K � I # L/D

where) I�F L is the predecessor of F in #
and � I # L
�G�H 8 % � I-) I�F L ��F L5. return $ �!% �'&���(*),+

Figure 9
Chu-Liu-Edmonds algorithm for finding maximum spanning trees in directed graphs.

inductive hypothesis that the chart stores the best score over all strings of smaller length. A quick
look at the pseudo-code shows that the run-time of the Eisner algorithm is

� � � � � .
For the maximum projective spanning tree problem, it is easy to show that the Eisner

dependency parsing algorithm is an exact solution if we are given a linear ordering of the vertices
in the graph. Indeed, every projective dependency tree of sentence � is also a projective spanning
tree of the graph � � and vice-versa. Thus, if we can find the maximum projective dependency
tree using the Eisner algorithm, then we can also find the maximum spanning tree. For natural
language dependency tree parsing, the linear ordering on the graph vertices is explicitly given by
the order of the words in the sentence.

In addition to running in
� � � � � , the Eisner algorithm has the additional benefit that it is

a bottom-up dynamic programming chart parsing algorithm allowing for � -best extensions that
increase complexity by a multiplicative factor of

� � �JI-K!P � � (Huang and Chiang 2005).

3.2 Non-projective Parsing Algorithms

To find the highest scoring non-projective tree we simply search the entire space of spanning trees
with no restrictions. Well known algorithms exist for the less general case of finding spanning
trees in undirected graphs (Cormen et al. 1990), as well as � -best extensions to them (Eppstein
1990). Efficient algorithms for the directed case are less well known, but they exist. We will
use here the Chu-Liu-Edmonds algorithm (Chu and Liu 1965; Edmonds 1967), sketched in
Figure 9 following Georgiadis (Georgiadis 2003). Informally, the algorithm has each vertex in
the graph greedily select the incoming edge with highest weight. If a tree results, it must be
the maximum spanning tree. If not, there must be a cycle. The procedure identifies a cycle and
contracts it into a single vertex and recalculates edge weights going into and out of the cycle.
It can be shown that a maximum spanning tree on the resulting contracted graph is equivalent
to a maximum spanning tree in the original graph (Georgiadis 2003). Hence the algorithm can
recursively call itself on the new graph. Naively, this algorithm runs in

� � � � � time since each
recursive call takes

� � �
�
� to find the highest incoming edge for each word and to contract the

graph. There are at most
� � � � recursive calls since we cannot contract the graph more then �

times. However, Tarjan (Tarjan 1977) gives an efficient implementation of the algorithm with� � �
�
� time complexity for dense graphs, which is what we need here. These algorithms can be

extended to the � -best case (Camerini et al. 1980) with a run-time of
� � � �

�
� .

To find the highest scoring non-projective tree for a sentence, � , we simply construct
the graph � � and run it through the Chu-Liu-Edmonds algorithm. The resulting spanning

14

McDonald et al. Multi-Lingual Dependency Parsing

tree is the best non-projective dependency tree. We illustrate this on the simple example � �
John saw Mary, with directed graph representation � � ,

��	�	
�

��� �
�
	

� � � ���

� �

�

�

� �

� �� �

�

�
� �

The first step of the algorithm is to find, for each word, the highest scoring incoming
edge

��	�	
�
��� �

�
	

� � � ���� �

� �� �

If the result of greedily choosing the highest scoring incoming edge to every node results in a
tree, it would have to be a maximum spanning tree. To see this, consider a tree 	 constructed
by greedily choosing the highest scoring incoming edge for every word. Now consider a tree 	 �

such that 	 ��
	
�

and 	 �

is the maximum spanning tree. Find edges � � ��� �<G�	 and � � � � � �<G�	 �

such that
�
��
� �

. We know by the definition of 	 that the score of � � ��� � is at least as large than
the score of � � � ��� � . So we can simple make the change 	 � �
	 ��� � � � � � �
	 � � � � � ��� � 	 and 	 �

will
be a graph of a least equal weight. If we repeat this process, we will eventually converge to the
tree 	 and we are always guaranteed that the resulting graph will have a score at least as large as
that of 	 �

. Thus, either 	 �

could not have been the maximum spanning tree, or both 	 and 	 �

are
trees of equal weight. Either way, 	 is a maximum spanning tree.

In the current example there is a cycle, so we will contract it into a single node and
recalculate edge weights according to Figure 9.

��	�	
�
��� �

�
	

� � � ���

H � �

� �

� �

� � �

The new vertex � � � represents the contraction of vertices John and saw. The edge from
� � � to Mary is 30 since that is the highest scoring edge from any vertex in � � � . The edge from
root into � � � is set to 40 since this represents the score of the best spanning tree originating
from root and including the vertices in the cycle represented by � � � . The same leads to the
edge from Mary to � � � . The fundamental property of the Chu-Liu-Edmonds algorithm is that an
MST in this graph can be transformed into an MST in the original graph (Georgiadis 2003). The

15

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

proof of this fact follows from the lemma that, after the greedy step, all the edges of any cycle
must exist in some MST, except a single edge. That single edge is one that must be removed to
break this cycle and satisfy the tree constraint. Knowing this lemma, we can observe that in the
contracted graph, the weight of edges going into the contracted node represent, exactly, the best
score of that edge entering the cycle and breaking it. For example, the edge from root into � � � is
40 representing that edge entering the node saw and breaking the cycle by removing the single
edge from John to saw.

We recursively call the algorithm on this graph. Note that we need to keep track of the real
endpoints of the edges into and out of � � � for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

��	�	
�
��� �

�
	

� � � ���

H �
� �

� � �

This is a tree and thus the MST of this graph. We now need to go up a level and reconstruct the
graph. The edge from � � � to Mary originally was from the word saw, so we include that edge.
Furthermore, the edge from root to � � � represented a tree from root to saw to John, so we include
all those edges to get the final (and correct) MST,

��	�	
�
��� �

�
	

� � � ���

� �

� �� �

A possible concern with searching the entire space of spanning trees is that we have not
used language-specific syntactic constraints to guide the search. Many languages that allow non-
projectivity are still primarily projective. By searching all possible non-projective trees, we run
the risk of finding extremely bad trees. Again, we have assumed a data driven approach to parsing
and appeal to the properties of the training data to eliminate such cases.

4. Beyond Edge Factorization

Restricting scores to a single edge in a dependency tree is a very impoverished view of depen-
dency parsing. Yamada and Matsumoto (Yamada and Matsumoto 2003) showed that keeping a
small amount of parsing history was crucial to improving performance for their locally trained
shift-reduce SVM parser. It is reasonable to assume that other parsing models will benefit from
features over previous decisions.

Here we will focus on methods for parsing second-order spanning trees. These models factor
the score of the tree into the sum of adjacent edge pairs. To quantify this, consider the example
from Figure 1, with words indexed: root(0) John(1) hit(2) the(3) ball(4) with(5) the(6) bat(7).
Using a first-order spanning tree formulation, the score of this tree would be,

� � � � � ��� � � � � � ��� � � � � H ��� � � � ��� �
� � � H � � ��� � ��� ��� ��� � ��� ��� �

However, in our second-order spanning tree model, the score of this tree would be,

16

McDonald et al. Multi-Lingual Dependency Parsing

� � � � � � � ��� � � � � � � � � � � � � � � � H � � � � � � H � � �
� � � H � � � � � � � � � � � � � ��� � ��� � � ��� �

Here we have changed the score function to � � � � � ��� � , which is the score of creating a pair of
adjacent edges, from word �

J to words � � and ��� . For instance, � � � � H � � � is the score of creating
a the edges from hit to with and from hit to ball. The score functions are relative to the left or right
of the head and we never score adjacent edges that are on different sides of the head (e.g. � � � � � � H �
for the adjacent edges from hit to John and ball). This left/right independence assumption is
common and will allow us to define efficient second-order projective parsing algorithms. We let� � � � � � � � be the score when � � is the first left/right dependent of word �

J . For example, � � � � � � H �
indicates the score of creating a dependency from hit to ball, where ball is the first modifier to
the right of hit. More formally, if the word �

J � has the modifiers as shown,

�
J �

�
J � ����� �

J �
�
J ��� � ����� �

J��
the score factors as follows:

� � : ��
�� � � � � � � � K � �
� � � � � � � � � � � � � �

� � � � � � � � � � K � � � � (: ��
 � K �
� � � � � � � � � � K � �

A second-order MST is mathematically a richer factorization, since the score function can
just ignore the middle modifier, or sibling, argument and it would be reduced to the standard
first-order model. In fact we will define the second order score to directly incorporate first-
order information, � � � � � ��� ��� � � � � � � � ��� � � � ��� � . Here the first term includes features over the
pairs of adjacent edges and the second over features of a single edge. It is also important to
note that � � � � � ��� � �� � � � ��� � � � . In fact, the order of the two adjacent modifiers is determined
by there relative location in the sentence to the head. The closer modifier is always the first
argument. Furthermore, for features over pairs of edges the relative order of the modifiers is
always incorporated.

The score of a tree for second-order parsing is now,

� � ��� �����
�

I4J�� � � � L����
� � � � � ��� �

Which is the sum of adjacent edge scores in � .
Essentially the second-order model allows us to condition on the most recent parsing

decision, i.e. the last dependent picked up by a particular word. This is analogous to the Markov
conditioning of the Charniak parser (Charniak 2000) for phrase-structure parsing.

When moving to this second-order factorization we have introduced the notion of edge
adjacency in a tree. This notion is only meaningful when there is a fixed order on the vertexes in
the graph, as is the case with dependency parsing. It is with respect to this restricted formulation
that we consider maximum spanning tree parsing in this section.

4.1 A Projective Parsing Algorithm

In this section we describe a
� � � � � second-order parsing algorithm that works by breaking up

dependency creation in the first-order algorithm into two steps - sibling creation followed by head
attachment. This cubic extension to the second-order case was in the original work of Eisner
(Eisner 1996). Graphically the intuition behind the algorithm is given in Figure 10. The key

17

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

� � ��� ��� ��� �
�	� ��� ��� � �

+ � ���
(A)

� � � � ��� ��� �
��� � � ��� ���
(B)

� � ���

�	� ���
(C)

Figure 10
An extension of the Eisner algorithm to second-order dependency parsing. This figure shows how

� �
creates a dependency to

���
with the second-order knowledge that the last dependent of

� � was
���

. This is
done through the creation of a sibling item in part (B).

insight is to delay completion of items until all the dependents of the head have been gathered.
This allows for the collection of pairs of sibling dependents in a single stage while maintaining
a cubic time parsing algorithm. We will define a new item type called a sibling type (in addition
to the usual complete and incomplete types).

The algorithm works by defining an almost identical bottom-up dynamic programming
table as the original Eisner algorithm. The only difference is the addition the new sibling type.
Pseudo-code for the algorithm is given in Figure 11. As before, we let ��� ��� � � � � � � � � � be a dynamic
programming table that stores the score of the best subtree from position � to position � , � � � ,
with direction � and complete value � . In the second-order case we let � G � � � � � � 	 to indicate if
a subtree is complete (� � � , no more dependents), incomplete (��� �

, needs to be completed),
or represents sibling subtrees (� � �). Sibling types have no inherent direction, so we will always
assume that when � � � then � � null (-). As in the first-order case, the proof of correctness is
done through structural induction. Furthermore, back-pointers can be included to reconstruct the
highest scoring parse and the � -best parses can be found in

� � �JI�K.P � � � � � � .

4.2 An Approximate Non-projective Parsing Algorithm

Unfortunately second-order non-projective MST parsing is NP-hard. We prove this fact with a
reduction from 3-dimensional matching.
3DM: Disjoint sets, � �	� ��
 each with � distinct elements, and a set 	��
��������
 . Question:
is there a subset � � 	 such that � ��� ��� and each � G�� � � �
 occurs in exactly one
element of � .
Reduction: Given an instance of 3DM we define a graph in which the vertices are the elements
of � � � �
 as well as an artificial root node. We insert edges from root to all � G�� as well
as edges from all � G�� to all � G�� and �RG�
 . We order the words s.t. the root is on the left
followed by all elements of � , then � , and finally
 . The order of elements within each set is
unimportant. We then define the second-order score function as follows,� � ��	�	
� � � � � � ��� �

,
F � � � � G��� � � � � � � ��� �

,
F � G�� � � G��� � � � � ��� ��� � , F � � � � �	� � G 	

All other scores are defined to be ��� , including for edges pairs that were not defined in the
original graph.
Theorem: There is a 3D matching iff the second-order MST has a score of � .
Proof: First we observe that no tree can have a score greater than � since that would require
more than � pairs of edges of the form � � � � ��� � . This can only happen when some � has multiple
� G�� modifiers or multiple �RG�
 modifiers. But if this were true then we would introduce a
��� scored edge pair (e.g. � � � � � � � � �). Now, if the highest scoring second-order MST has a

18

McDonald et al. Multi-Lingual Dependency Parsing

Initialization: ��� ����� ����� �	���
�� � �!* � �
� ���8��

for � &.(+*/* %

for �<&.(+*,* %
� ���
6��
if ��� % then break

% Create Sibling Items
��� ����� � ��� - ��� � ����������� �"!�# 	 �'��� ���&� � ��� $�����(��.6���� � 6 (���� � ��� �����,(�� �

% First Case: head picks up first modifier
��� ����� � ��� ����� ��� ����� ���&� ��� (��&� $�����(��!6���� ��� (���� � ��� ������(��.6�� � � � - �(� �
��� ����� � ��� $���� ��� ����� ���&� ����� $��&��(��.6���� � 6�(���� � ��� ������(��.6������ � - � � �

% Second Case: head picks up a pair of modifiers (through a sibling item)
��� ����� � ��� ����� ��� ������� �'��� ����� � ��� ����� ���������'� ���"!�# 	 ����� ����� � ��� - ��� �'�"6 ��� � �&� � �&� ����� ���.6%��� � � � � � ��� �
��� ����� � ��� $���� ��� ������� �'��� ����� � ��� $���� ���������'� ��#)!(� 	 ����� ����� � ��� $��&� �'�.6���� � ��� � ��� - ��� �'�!6%����� � � � � ��� �

% Create complete items
��� ����� � ��� ������(�� ������� � �"!�# 	 �'��� ���&� � ��� $���� ���.6���� � 6 (���� � ��� ����� �'�.6%� � � �(� ���
��� ����� � ��� $�����(�� ��������� �"!�# 	 �'��� ���&� � ��� $���� ���.6���� � 6 (���� � ��� ����� �'�.6%� ��� � � ���

end for
end for

Figure 11
Pseudo-code for bottom-up second-order Eisner parsing algorithm.

score of � , that means that every � must have found a unique pair of modifiers � and � � which
represents the 3D matching, since there would be � such triples. Furthermore, � and � could not
match with any other � � since they can only have one incoming edge in the tree. On the other
hand, if there is a 3DM, then there must be a tree of weight � consisting of second-order edges
� � � � �	� � for each element of the matching � . Since no tree can have a weight greater then � , this
must be the highest scoring second-order MST. Thus if we can find the highest scoring second-
order MST in polynomial time, then 3DM would also be solvable. Note that this proof works for
both dependency parsing with the left/right modifier independent assumption and without. �

Thus, the Chu-Liu-Edmonds algorithm most likely cannot be extended polynomially to han-
dle second-order feature representations. This is an important result, since it shows that even for
data driven parsing, non-projective exact search becomes intractable for any factorization other
than first-order3. To combat this, we will create an approximate algorithm based on the

� � � � �
second-order projective parsing algorithm just provided. The approximation will work by first
finding the highest scoring projective parse. It will then rearrange edges in the tree, one at a time,
as long as such rearrangements increase the overall score and do not violate the tree constraint.
We can clearly motivate this approximation by observing that even in non-projective languages
like Czech and Dutch, most trees are primarily projective with just a few non-projective edges
(Nivre and Nilsson 2005). Thus, by starting with the highest scoring projective tree, we are
typically only a small number of transformations away from the highest scoring non-projective

�
Even though the above reduction was for pairwise adjacent edge factorization, it is easy to extend the reduction for
arbitrary constraints over more than one edge.

19

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

2-order-non-proj-approx ��� � � �
Sentence � ��� � * * *���� , � � � �������
Weight function �T&)��#5� � � � � $��

1. Let
'� 2-order-proj ��� �(� �
2. while true
3. � � �
	 ��
 � � (��� � � (
4. for

� &!(�
�
�
5%
5. for #
& ��
�
�
 %
6.
��!��
 � # $ � �
7. if ������������
 � � or � � &)��#5��� � � ���
 continue
8. � � ����� ��
��/� � � ��� �
��
9. if � � �

10. � � �+��
 � � �!� ��#
11. end for
12. end for
13. if � � �
14.
'��
 � � $
��
15. else �#" �%$ � %

16. end while

Figure 12
Approximate second-order non-projective parsing algorithm.

tree. Pseudo-code for the algorithm is given in Figure 12. The expression � � � � � � denotes the
dependency graph identical to � except that � � ’s head is � J instead of what it was in � . The test& O�'(' � ��� is true iff the dependency graph � satisfies the tree constraint.

In more detail, line 1 of the algorithm sets � to the highest scoring second-order projective
tree. The loop of lines 2-16 exits only when no further score improvement is possible. Each
iteration seeks the single highest-scoring change in dependency within � that does not break the
tree constraint. To that effect, the nested loops starting in lines 4 and 5 enumerate all � � � � � pairs.
Line 6 sets �

�

to the dependency graph obtained from � by changing � � ’s head to �
J . Line 7

checks that the move from � to �
�

is valid and that � � ’s head was not already �
J and that �

�

is
a tree. Line 8 computes the score change from � to �

�

. If this change is larger then the previous
best change, we record how this new tree was created (lines 9-10). After considering all possible
valid edge changes to the tree, the algorithm checks to see that the best new tree does have a
higher score. If that is the case, we change the tree permanently and re-enter the loop. Otherwise
we exit since there are no single edge changes that can improve the score.

This algorithm allows for the introduction of non-projective edges because we do not restrict
any of the edge changes except to maintain the tree property. In fact, if any edge change is ever
made, the resulting tree is guaranteed to be non-projective, otherwise there would have been a
higher scoring projective tree that would have already been found by the exact projective parsing
algorithm.

It is clear that this approximation will always terminate – there are only a finite number
of dependency trees for any given sentence and each iteration of the loop requires an increase
in score to continue. However, the loop could potentially take exponential time, so we will
bound the number of edge transformations to a fixed value � . It is easy to argue that this
will not hurt performance. Even in freer-word order languages such as Czech, almost all non-
projective dependency trees are primarily projective, modulo a few non-projective edges. Thus,
if our inference algorithm starts with the highest scoring projective parse, the best non-projective
parse only differs by a small number of edge transformations. Furthermore, it is easy to show
that each iteration of the loop takes

� � �
�
� time, resulting in a

� � � � � � �
�
� runtime algorithm.

In practice, the approximation terminates after a small number of transformations and we do

20

McDonald et al. Multi-Lingual Dependency Parsing

not bound the number of iterations in our experiments. In fact, the run-time of this algorithm is
dominated by the call to 2-order-proj.

We should note the similarity of this approximate dependency parsing algorithm with that
of Foth et al. (Foth et al. 2000). In that work they describe an algorithm for constraint based
dependency parsing (Maruyama 1990; Harper and Helzerman 1995) in which a suboptimal
solution is initially found and subsequent local constraint optimizations attempt to push the
algorithm near the global optimum. As is the case with our algorithm it is possible for this
method to get stuck in a local maxima. Their main motivation to designing this algorithm was to
overcome difficulties in a standard constraint based dependency grammar when parsing spoken
dialogue.

5. Feature Representation

In the last section, we defined the score of an edge as � � � ��� ��� w � f � � � � � . This assumes that
we have a high-dimensional feature representation for each edge � � � � � . The basic set of features
we use are shown in Table 1a and b. All features are conjoined with the direction of attachment
as well as the distance between the two words creating the dependency. These features provide
back-off from very specific features over words and part-of-speech (POS) tags to less sparse
features over just POS tags. These features are added for both the entire words as well as the
� -gram prefix if the word is longer than � characters.

Using just features over head-modifier pairs in the tree is not enough for high accuracy
since all attachment decisions are made outside of the context in which the words occurred.
To solve this problem, we added two more types of features, which can be seen in Table 1c.
The first new feature class recognizes word types that occur between the head and modifier
words in an attachment decision. These features take the form of POS trigrams: the POS of
the head, that of the modifier, and that of a word in between, for all distinct POS tags for the
words between the head and the modifier. These features were particularly helpful for nouns
to select their heads correctly, since they help reduce the score for attaching a noun to another
noun with a verb in between, which is a relatively infrequent configuration. The second class
of additional features represents the local context of the attachment, that is, the words before
and after the head-modifier pair. These features take the form of POS

H
-grams: The POS of the

head, modifier, word before/after head and word before/after modifier. We also include back-off
features to trigrams where one of the local context POS tags was removed.

These new features can be easily added since they are given as part of the input and do
not rely on knowledge of dependency decisions outside the current edge under consideration.
Adding these features resulted in a large improvement in performance and brought the system to
state-of-the-art accuracy.

As mentioned earlier, all of the runtime analysis relied on the fact that the calculation of� � � ��� � was
� � � � , when in fact it is really linear in the number of features that are active for

each edge. Table 1 shows that for each edge there are only a handful of bigram and unigram
features as well as context POS features. More troubling are the POS features for all the words
in-between the two words in the edge - this in fact makes the calculation of � � � ��� � at least

� � � �
making the projective parsing algorithms

� � ��� � and the non-projective parsing algorithm
� � � � � .

However, a feature can be active at most once for each distinct POS, e.g., if there are two proper
nouns (NNP) between �

J and � � , the feature is active only once. We define a table � 	 � � � � � �
that is the set of POS tags for all the words in-between �

J and ��� . This table can be calculated
statically before parsing in

� � �
�
� using a dynamic programming algorithm that fills in the table

for successively larger sub-strings. It is easy to see that � 	 � � � ��� � is equal to � 	 � � � � � � � � plus
the POS of ��� : � , if it is not already in � 	 � � � ��� � � � , which can be calculated in

� � � � using a
hash map. We have now only added (not multiplied) a factor of

� � �
�
� to the runtime. Using this

21

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

a)

Basic Uni-gram Features���
-word,

���
-pos� �

-word� �
-pos� � -word,

� � -pos� � -word� � -pos

b)

Basic Bi-gram Features���
-word,

���
-pos,

� � -word,
� � -pos���

-pos,
� � -word,

� � -pos���
-word,

� � -word,
� � -pos���

-word,
���

-pos,
� � -pos���

-word,
���

-pos,
� � -word� �

-word,
� � -word� �

-pos,
� � -pos

c)

In Between POS Features� �
-pos, b-pos,

� � -pos

Surrounding Word POS Features� �
-pos,

� �
-pos+1,

� � -pos-1,
� � -pos� �

-pos-1,
� �

-pos,
� � -pos-1,

� � -pos���
-pos,

���
-pos+1,

� � -pos,
� � -pos+1���

-pos-1,
���

-pos,
� � -pos,

� � -pos+1

d)

Second-order Features���
-pos,

���
-pos,

� � -pos���
-pos,

� � -pos���
-word,

� � -word���
-word,

� � -pos���
-pos,

� � -word

Table 1
Features used by system,

� ��#�� � � , where � 1 is the head and ��� the modifier in the dependency relation.
� 1 -word: word of head in dependency edge. � � -word: word of modifier. � 1 -pos: POS of head. � � -pos: POS
of modifier. � 1 -pos+1: POS to the right of head in sentence. � 1 -pos-1: POS to the left of head. � � -pos+1:
POS to the right of modifier. � � -pos-1: POS to the left of modifier. b-pos: POS of a word in between head
and modifier.

table we can now calculate � � � � � � without enumerating all words in-between. The result is that
our grammar constant is now, in the worst case, on the order of the number of distinct POS tags,
which is typically around 40 or 50, plus the handful of unigram, bigram and context features.
When compared to the grammar constant for phrase-structure parsers this is still very favorable.

5.1 Second-Order Features

Since we are also building a second-order parsing model, we must define f � � � � ��� � . We let the
first set of features be all those in the definition of f � � ��� � . This is possible by simply ignoring
the middle index and creating features only on the original head-modifier indexes. In addition to
these features, we add the features in Table 1d.

These new features have two versions. The first is exactly as described in the table. The
second conjoins them with the distance between the two siblings as well as the direction of
attachment (from the left or right). These features were tuned on a development set. We tried
additional features, such as the POS of words in-between the two siblings, but the set defined
here seemed to provide optimal performance.

6. Initial Experiments

6.1 Data Sets

We performed these experiments on three sets of data, the Penn English Treebank (Marcus et al.
1993), the Czech Prague Dependency Treebank (PDT) v1.0 (Hajič 1998; Hajič et al. 2001) and
the Penn Chinese Treebank (Xue et al. 2004). For the English data we extracted dependency trees
using the rules of Yamada and Matsumoto (Yamada and Matsumoto 2003), which are similar,
but not identical, to those used by Collins (Collins 1999) and Magerman (Magerman 1995).
Because the dependency trees are extracted from the phrase-structures in the Penn Treebank,
they are by construction exclusively projective. We used sections 02-21 of the Treebank for
training data, section 22 for development and section 23 for testing. All experiments were run
using every single sentence in each set of data regardless of length. For the English data only, we
followed the standards of Yamada and Matsumoto (Yamada and Matsumoto 2003) and did not
include punctuation in the calculation of accuracies. For the test set, the number of words without
punctuation is 49,892. Since our system assumes part-of-speech information as input, we used
the maximum entropy part-of-speech tagger of Ratnaparkhi (Ratnaparkhi 1996) to provide tags

22

McDonald et al. Multi-Lingual Dependency Parsing

for the development and testing data. The number of features extracted from the Penn Treebank
were � � � ��� � H.H � for the first-order model and � ��� � � � � H � for the second-order model.

For the Czech data, we did not have to automatically extract dependency structures since
manually annotated dependency trees are precisely what the PDT contains. We used the prede-
fined training, development and testing split for the data. Furthermore, we used the automatically
generated POS tags that were provided with the data. Czech POS tags are extremely complex and
consist of a series of slots that may or may not be filled with some value. These slots represent
lexical properties such as standard POS, case, gender, and tense. The result is that Czech POS
tags are rich in information, but quite sparse when viewed as a whole. To reduce sparseness, our
features rely only on the reduced POS tag set from Collins et al. (Collins et al. 1999). The number
of features extracted from the PDT training set were

��� � H � � � � � � for the first-order model and
� H ��� � H � ����� for the second-order model.

Czech has more flexible word order than English and as a result the PDT contains non-
projective dependencies. On average,

� � �
of the sentences in the training, development and

test sets have at least one non-projective dependency. However, less than
���

of total edges are
actually non-projective. Therefore, handling non-projective arcs correctly has a relatively small
effect on overall accuracy. To show the effect more clearly, we created two Czech data sets.
The first, Czech-A, consists of the entire PDT. The second, Czech-B, includes only the

� ���
of

sentences with at least one non-projective dependency. This second set will allow us to analyze
the effectiveness of the algorithms on non-projective material.

The Chinese data set was created by extracting dependencies from the Penn Chinese Tree-
bank (Xue et al. 2004) using the head rules that were created by a native speaker primarily for
the purpose of building a machine translation system. Again, because the dependency trees are
extracted from the phrase-structures, they are by construction exclusively projective. We split the
data into training and testing by placing every tenth sentence in the data into the test set. We use
gold POS tags for this data set since we have not yet trained a Chinese POS tagger. The number
of features extracted from the Penn Chinese Treebank training set were

� � ��� � � � H � for the first-
order model and

� � � H � � � � � for the second-order model. Unlike English and Czech, we did not
include any � -gram prefix features.

6.2 Results: Unlabeled Dependencies

This section is primarily divided into two sections, projective and non-projective results. For the
non-projective results we focus on the Czech data since it contains this particular phenomenon.

The first two sections compare pure dependency parsers only, i.e., those parsers trained only
on dependency structures. We include a third section that compares our parsers to lexicalized
phrase-structure parsers, which have been shown to produce state-of-the-art dependency results
(Yamada and Matsumoto 2003).

6.2.1 Projective Parsing Results. We compare five systems,

� Y&M2003: The Yamada and Matsumoto parser (Yamada and Matsumoto 2003)
is a discriminative parser based on local decision models trained by an SVM.
These models are combined in a shift-reduce parsing algorithm similar to
Ratnaparkhi (Ratnaparkhi 1999).

� N&S2004: The parser of Nivre and Scholz (Nivre and Scholz 2004) is a memory
based parser with an approximate linear parsing algorithm.

23

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

English Czech-A Chinese

Accuracy Complete Accuracy Complete Accuracy Complete

Y&M2003 90.3 38.4 - - - -
N&S2004 87.3 30.4 - - - -
N&N2005 - - 78.5 20.6 - -� � 	 -order-proj 90.7 36.7 83.0 30.6 79.7 27.2� ��� -order-proj 91.5 42.1 84.2 33.1 82.5 32.6

Table 2
Unlabeled projective dependency parsing results. Accuracy is the percentage of words modififying the
correct head. Complete is the percentage of sentences for which the entire predicted dependency graph was
correct.

� N&N2005: The parser of (Nivre and Nilsson 2005), which is an extension of
N&S2004 to Czech. This paper presents both a projective and non-projective
variant. We report the non-projective results in the next section.

� 1
� � -order-proj: This parser uses the Eisner first-order projective parsing

algorithm combined with the MIRA learning framework.
� 2

���
-order-proj: This parser uses the second-order extension of the Eisner

algorithm combined with the MIRA learning framework.

Results are shown in Figure 2. Not all systems report all results. Across all languages
the parsers we have developed here provide state-of-the-art performance without any language
specific enhancements. It can be argued that the primary reason for this improvement is the
parsers ability to incorporate millions of rich dependent features, which is not possible in for
the history based models (Nivre and Nilsson 2005; Nivre and Scholz 2004). The Yamada and
Matsumoto (Yamada and Matsumoto 2003) SVM parser also has this ability. However, their
locally trained model can suffer from the label bias problem (Lafferty et al. 2001) as well as error
propagation during their shift-reduce search. Furthermore, we can also see that the introduction
of second-order features improves parsing substantially for all languages, as expected.

6.2.2 Non-projective Parsing Results. As mentioned earlier,
� ���

of the sentences in the PDT
contain at least one non-projective dependency and roughly

���
of all dependencies are non-

projective. In this section we examine the performance of our non-projective parsers on the entire
PDT (data set Czech-A) as well as a subset containing only those sentences with non-projective
dependencies (data set Czech-B).

We compare five systems,

� N&N2005: The parser of Nivre and Nilsson (Nivre and Nilsson 2005) is a
memory based parser like (Nivre and Scholz 2004). This parser models
non-projective dependencies through edge transformations encoded into labels on
each edge. For instance a label can encode a parental raises in the tree (when a
edge is raised along the spine towards the root of the tree).

� 1
� � -order-proj: The first-order projective parser from Section 6.2.1.

� 2
���

-order-proj: The second-order projective parser from Section 6.2.1.
� 1

� � -order-non-proj: This parser uses the Chu-Liu-Edmonds MST algorithm as
described in Section 3.2.

24

McDonald et al. Multi-Lingual Dependency Parsing

Czech-A Czech-B
Accuracy Complete Accuracy Complete

N&N2005 80.0 31.8 - -� � 	 -order-proj 83.0 30.6 74.4 0.0� � � -order-proj 84.2 33.1 74.6 0.0� � 	 -order-non-proj 84.1 32.2 81.0 14.9� � � -order-non-proj 85.2 35.9 81.9 15.9

Table 3
Unlabeled non-projective dependency parsing results.

� 2
���

-order-non-proj: This parser uses the approximate second-order
non-projective parsing algorithm described in Section 4.2.

Results are shown in Figure 3. This table shows us that for both the first and second-
order models, modeling non-projective dependencies leads to an improvement in performance of
around

� �
absolute. Especially surprising is that the second-order approximate algorithm leads

to such a large improvement. The most likely reason is that the approximate post-process edge
transformations are incorporated into the online learning algorithm, which allows the model to
adjust its parameters for common mistakes made during the approximation. Thus the algorithm
learns quickly that the best non-projective tree is typically only one or two edge transformations
away from the highest scoring projective tree.

As mentioned earlier, we have not been able to put a worst-case complexity on our ap-
proximate second-order non-projective parsing algorithm. However, in terms of runtime, our
projective

� � � � � second-order model runs in 16m32s and our non-projective approximation in
17m03s on the Czech evaluations data. Clearly, the post-process approximate step of inference
does not in practice add too much time. This is because each sentence typically contains only
a handful of non-projective dependencies. As a result the algorithm will learn not to adjust too
many edges after the initial projective parsing step.

7. Labeled Dependency Parsing

Though most large scale evaluations of dependency parsers have dealt with unlabeled depen-
dency accuracies, it is clear that labeled dependency structures like those in Figure 3 are more
desirable for further processing since they identify not only the modifiers of a word, but also
their specific syntactic or grammatical function. As a result, many standard dependency parsers
already come with the ability to label edges (Lin 1998; Nivre and Scholz 2004; Sleator and
Temperley 1993). In this section we extend the algorithms previously presented to include
syntactic labels. We assume throughout this section that there is a known set � G�	 of labels
and that our training data is annotated with this information.

One simple approach would be to extract the highest scoring unlabeled trees and then run a
classifier over its edges to assign labels. Dan Klein recently showed that labeling is relatively easy
and that the difficulty of parsing lies in creating bracketings (Klein 2004), providing evidence that
a two-stage approach may prove good enough. However, for the sake of completeness, we will
provide details and experiments on learning dependencies trees with labels in a single stage as
well as a two-stage system.

25

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

7.1 First-Order Labeling

For first-order parsing we will change our edge score function to include label information,

� � � ��� � � ��� w � f � � ��� � � �

In other words, we now define the score of the edge as the dot product between a weight vector
and a high dimensional feature representation of the edge and that edges label. Hence the score
of a dependency tree will now be,

� � ��� � ���
�

I3J�� � � ��L����
w � f � � � � � � �

Both the Eisner projective and the Chu-Liu-Edmonds non-projective parsing algorithm can be
modified so that only an

� ��� 	 � �
�
� factor is added (not multiplied) to the run-time.

Consider a label � for an edge � � ��� � such that,

� �NM"O P = M �

� � w � f � � � � � � � �

It is easy to show that, if the highest scoring tree � under some weight vector w contains the
edge � � ��� � , then the label of this edge must be � . Consider some � � M"O P = M � � � � ��� ��� and an
arbitrary edge � � ��� � � � G � . Assume that � ��NM"O P = M � � � w � f � � ��� � � � � . We can simply replace the
label of this edge with the label that maximizes the edge score to produce a higher scoring tree.
Thus, by contradiction, it must be the case that � �NM"O P = M � � � w � f � � � � � � � � .

Using this fact, we can define a table
�
� � � � � � such that each entry stores the best label for

that particular edge, i.e.,

�
� � � ��� ���NM!OQP = M �

� � w � f � � ��� � � � �

This table takes
� ��� 	 � �

�
� to calculate and can be calculated statically before parsing. Dur-

ing parsing we define � � � ��� ��� � � � ��� � �
� � � ��� � � and we can run the algorithm as before with-

out increasing complexity. Thus the new complexity for the projective parsing algorithm is� � ��� � � 	 � �
�
� and

� ��� 	 � �
�
� for the non-projective algorithm.

7.2 Second-Order Labeling

We redefine the second-order edge score to be,

� � � � � ��� � � ��� w � f � � � � ��� � � �

This is the score of creating an edge from word �
J to � � with edge label � such that the last

modifier of � � was � � . It is easy to show that we can use the same trick here and statically
calculate,

�
� � � � � ��� � �NM!OQP = M �

� � w � f � � � � ��� � � � �

26

McDonald et al. Multi-Lingual Dependency Parsing

and set � � � � � ��� ��� � � � � � ��� � �
� � � � � � � � � to allow us to apply our old parsing algorithms4. The

result is a
� �	� 	 � ��� � complexity for the second-order projective extension since it will take� �	� 	 � ��� � to compute

�
� � � � � � � � .

We could have defined our second-order edge score as,

� � � � � � � � � � � � ��� w � f � � � � ��� � � � � � �

where �
�

is the label for the edge � � � � � . This would allow us to model common sibling edge
labels, e.g., possibly preventing a verb from taking adjacent subjects. However, inference under
this definition becomes

� �	� 	 �
�
� � � , which can be prohibitive if the number of labels is large.

7.3 Two-Stage Labeling

As mentioned earlier, a simple solution would be to create a second stage that takes the output
parse � for sentence � and classifies each edge � � ��� �TG � with a particular label � . Though one
would like to make all parsing and labeling decisions jointly to include the shared knowledge
of both decisions when resolving any ambiguities, joint models are fundamentally limited by
the scope of local factorizations that make inference tractable. In our case this means we are
forced only to consider features over single edges or pairs of edges in the tree. Furthermore, the
complexity of inference increases by a factor of the number of possible labels, which can be very
detrimental if the label set is large. However, in a two-stage system we can incorporate features
over the entire output of the unlabeled parser since that structure is fixed as input. The simplest
two-stage method would be to take as input an edge � � ��� �<G � for sentence � and find the label
with highest score,

� �NM"O P = M �

�
� � � � � � � � � � � � � �

Doing this for each edge in the tree would produce the final output. Such a model could easily be
trained using the provided training data for each language. However, it might be advantageous
to know the labels of other nearby edges. For instance, if we consider a head �

J with dependents� � � ������� � � � , it is often the case that many of these dependencies will have correlated labels. To
model this we treat the labeling of the edges � � � � � � ������� � � � � �
 � as a sequence labeling problem,

� � I4J�� � � L ������� � � I4J�� � L ����� � M"O P = M �
�

� ���� � � � � � � �

We use a first-order Markov factorization of the score

��� M"O P = M �
�

�
(

� � � � I4J�� � � L � � I4J�� � ��� � L �
� � � � � �

in which each factor is the score of assigning labels to the adjacent edges � � ��� (� and � � � � (: � �
in the tree � . We attempted higher-order Markov factorizations but they did not always improve
performance and training became significantly slower.

For score functions, we use the standard dot products between high dimensional feature
representations and a weight vector. Assuming we have an appropriate feature representation,

�
Additional care is required in the non-projective second-order approximation since a change of one edge could
result in a label change for multiple edges.

27

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

we can find the highest scoring label sequence with Viterbi’s algorithm. We use the MIRA
online learner to set the weights since we found it trained quickly and provide good performance.
Furthermore, it made the system homogeneous in terms of learning algorithms since that is what
is used to train our unlabeled parser. Of course, we have to define a set of suitable features. We
used the following:

� Edge Features: Word/pre-suffix/POS feature identity of the head and the modifier
(suffix lengths 2 and 3). Does the head and its modifier share a prefix/suffix.
Attachment direction. Is the modifier the first/last word in the sentence?

� Sibling Features: Word/POS/pre-suffix feature identity of the modifiers left/right
siblings in the tree (siblings are words with same head in the tree)? Do any of the
modifiers siblings share its POS?

� Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a head other than the
head? Are any of the words between the head and the modifier not a descendent of
the head (i.e. non-projective edge)?

� Non-local: How many modifiers does the modifier have? Is this the left/right-most
modifier for the head? Is this the first modifier to the left/right of the head?

Various conjunctions of these were included based on performance on held-out data. Note
that many of these features are beyond the scope of the edge based factorizations of the unlabeled
parser. Thus a joint model of parsing and labeling could not easily include them without some
form of re-ranking or approximate parameter estimation.

7.4 Experiments

In this section we report results for the first-order labeled dependency models described in
Section 7.1 as well as a two-stage labeling system, i.e., one that learns a model to label the output
of an unlabeled dependency parser. We report results for English on the WSJ using sections 02-
21 for training, section 22 for development and section 23 for evaluation. To extract labeled
dependency trees from this data, we took the label of the highest node in the phrase-structure
tree for which that word is the lexical head. For example, the phrase-structure tree for John hit
the ball with the bat would be transformed into a labeled dependency tree as shown in Figure 13.
Running an extraction script (we used Penn2Malt (Nivre 2004)) resulted in the set of 29 labels
shown in Figure 14. The labels are standard from the Penn Treebank, except the labels ‘DEP’,
which is meant to represent a generic dependency, and ‘ROOT’, which is designated for modifiers
of the artificial root node.

In the next sections we report results for English on Labeled Accuracy and Unlabeled
Accuracy. The former measures the number of words who correctly identified their head and
assign the correct label to the edge and the latter measure normal unlabeled dependency parsing
accuracy (as discussed in the last section). We always use the projective parsing algorithms in
this evaluation since the English data set is exclusively projective.

7.4.1 First-Order Results. Results for the first-order labeling model (Section 7.1) are shown in
Table 4. The first thing to note is that even with a large set of possible labels (28), overall accuracy
drops only 2% absolute, which roughly says that the labeling accuracy is 97.6% accurate over
correctly identified dependencies.

28

McDonald et al. Multi-Lingual Dependency Parsing

S

VP

PP

NP-SBJ NP-OBJ NP

N V DT N IN DT N

John hit the ball with the bat

�������

hit

John ball with

the bat

the

ROOT

NP-SBJ NP-OBJ PP

DEP NP

DEP

Figure 13
Converting a phrase-structure tree to a labeled dependency tree.

ADJP
ADVP
CONJP
DEP
FRAG
INTJ

LST
NAC
NP
NP-OBJ
NP-PRD
NP-SBJ

NX
PP
PRN
PRT
QP
ROOT

S
SBAR
SBARQ
SINV
SQ
UCP

VP
WHADVP
WHNP
X
ROOT

Figure 14
Labels extracted from WSJ.

English

Labeled Accuracy Unlabeled Accuracy
� � 	 -order-proj with joint labeling 88.7 90.9

Table 4
First-order labeling results for English.

Interestingly, unlabeled accuracy actually improves (from 90.7 to 90.9). This is consistent
with previous results (Nivre and Scholz 2004) and displays that learning to label and find
dependencies jointly will help overall performance. However, this benefit does come at the
expensive of computation, since the training and inference have an added

� � 	 �
�
� term, which

in practice leads to roughly to run times on the order of 3 times slower than the unlabeled system.
The fact that second-order joint parsing and labeling results in a run-time complexity of

� � 	 � � �
made it unreasonable to train large models in a practical amount of time. In the next section, it will
be shown that learning to label and find dependencies separately does not degrade performance
and has much nicer computational properties.

7.4.2 Two-Stage Results. Results for two-stage labeling (Section 7.3) are shown in Table 5. From
this table, we can see that a two-stage labeler with a rich feature set does just as well as a joint
labeler that is restricted to features over local factorizations (88.8 vs. 88.7). The advantage of the
two stage labeler is that it is much quicker to train and run, with a complexity of

� � � � � 	
�
� � ,

where the 	
�

factor comes from the fact that we have to run Viterbi’s algorithm. Furthermore,
the complexity for the second-order model is identical at

� � � � � 	
�
� � and can be trained very

efficiently. Results for this system are also shown in Table 5 and once again display the advantage
of a second-order model.

29

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

English

Labeled Accuracy Unlabeled Accuracy
� � 	 -order-proj with joint labeling 88.7 90.9� � 	 -order-proj with 2-stage labeling 88.8 90.7� ��� -order-proj with 2-stage labeling 89.4 91.5

Table 5
Two-stage labeling results for English.

8. Multi-lingual Dependency Parsing

An important question for any parsing model is, how well does it apply to new languages? In this
section we aim to show that the models described in this work are, for the most part, language
independent. We do this by evaluating the models on 14 diverse languages. This data set includes
the 13 standard dependency data sets provided by the organizers of the 2006 CoNLL shared task
(Buchholz et al. 2006) plus the English data set we described in Section 6.1. We show that our
standard parser with little to no language specific enhancements achieves high parsing accuracies
across all languages (relative to state-of-the-art). This is a very promising result and a strong
argument for the applicability of the parsers in this work. We used the two-stage parsing model
described in Section 7.3 for all experiments in this chapter.

8.1 Data Sets

We refer the reader to (Buchholz et al. 2006) for more inforamtion on the data sets used.

8.2 Adding Morphological Features

One advantage of the CoNLL data sets is that they came with derived morphological features
for each language. The types of features differed by data set so we incorporated them into our
models in a general way.

For the unlabeled dependency parser we augmented the feature representation of each edge.
Consider a proposed dependency of a modifier � � for the head �

J , each with morphological
features � � and � J respectively. We then add to the representation of the edge: � J as head
features, � � as modifier features, and also each conjunction of a feature from both sets. These
features play the obvious role of explicitly modeling consistencies and commonalities between a
head and its modifier in terms of attributes like gender, case, or number.

For the second-stage labeler we used the following feature set,

� Edge Features: Word/pre-suffix/POS/morphological feature identity of the head
and the modifier (suffix lengths 2 and 3). Does the head and its modifier share a
prefix/suffix. Attachment direction. What morphological features do head and
modifier have the same value for? Is the modifier the first/last word in the
sentence?

� Sibling Features: Word/POS/pre-suffix/morphological feature identity of the
modifiers left/right siblings in the tree (siblings are words with same head in the
tree)? Do any of the modifiers siblings share its POS?

30

McDonald et al. Multi-Lingual Dependency Parsing

UA LA

Arabic 79.3 66.9
Bulgarian 92.0 87.6

Chinese 91.1 85.9
Czech 87.3 80.2

Danish 90.6 84.8
Dutch 83.6 79.2

English 91.5 89.4
German 90.4 87.3

Japanese 92.8 90.7
Portuguese 91.4 86.8

Slovene 83.2 73.4
Spanish 86.1 82.3
Swedish 88.9 82.5
Turkish 74.7 63.2

Average 87.4 81.4

Table 6
Dependency accuracy on 14 languages. Unlabeled (UA) and Labeled Accuracy (LA).

� Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a head other than the
head? Are any of the words between the head and the modifier not a descendent of
the head (i.e. non-projective edge)?

� Non-local: How many modifiers does the modifier have? What morphological
features does the grandparent and the modifier have identical values? Is this the
left/right-most modifier for the head? Is this the first modifier to the left/right of
the head?

This is identical to the old feature set, except where morphology features have been included.

8.3 Experiments

Based on performance from a held-out section of the training data, we used non-projective
parsing algorithms for Czech, Danish, Dutch, German, Japanese, Portuguese and Slovene, and
projective parsing algorithms for Arabic, Bulgarian, Chinese, English, Spanish, Swedish and
Turkish5. Furthermore, for Arabic and Spanish, we used lemmas instead of inflected word forms
since this seemed to alleviate sparsity in parameter estimates for these languages.

Results on the test sets are given in Table 6. Performance is measured through unlabeled
accuracy, which is the percentage of words that correctly identify their head in the dependency
graph, and labeled accuracy, which is the percentage of words that identify their head and label
the edge correctly in the graph. Punctuation is ignored for all languages. For all languages
except English, a token is considered punctuation if and only if all of its characters are unicode
punctuation characters. For English we define punctuation identical to Yamada and Matsumoto
(Yamada and Matsumoto 2003).

These results show that a two-stage system can achieve a relatively high performance. In
fact, for every language our models perform significantly higher than the average performance
for all the systems reported in the CoNLL 2006 shared task (Buchholz et al. 2006) and represent

�
Using the non-projective parser for all languages does not effect performance significantly.

31

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

the best reporting system for Arabic, Bulgarian, Czech, Danish, Dutch, German, Slovene and
Spanish (English was not included in the shared task).

9. Summary

This paper provided an overview of the work of McDonald et al. (McDonald et al. 2005a, 2005b;
McDonald and Pereira 2006; McDonald et al. 2006) on global inference and learning algorithms
for data-driven dependency parsing. Further details can be found in the thesis of McDonald
(McDonald 2006), which includes analysis, example feature set extractions, phrase-structure
conversion head rules, applications, learning and parsing non-tree dependency graphs and more
experiments not only on parsing accuracy, but also on CPU performance.

10. Acknowledgements

The following people have either contributed directly to this work, or have engaged the authors in
imporant discussions related to this work: Kiril Ribarov, Jan Hajic, John Blitzer, Joakim Nivre,
Nikhil Dinesh, Mark Liberman, Mitch Marcus, Aravind Joshi, Jason Eisner, Noah Smith, Hal
Daume, Keith Hall, Liang Huang, Simon Corston-Oliver, Sebastian Riedel, and Fred Jelinek.

References
A. Abeillé, editor. 2003. Treebanks: Building and Using Parsed Corpora, volume 20 of Text, Speech and

Language Technology. Kluwer Academic Publishers, Dordrecht.
S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Floresta sintá(c)tica”: A treebank for Portuguese. In

Proceedings of the Third International Conference on Language Resources and Evaluation (LREC),
pages 1698–1703.

N. B. Atalay, K. Oflazer, and B. Say. 2003. The annotation process in the Turkish Treebank. In
Proceedings of the 4th International Workshop on Linguistically Interpreteted Corpora (LINC).

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1).

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003. The PDT: a 3-level annotation scenario. In
Abeillé (Abeillé 2003), chapter 7.

B.E. Boser, I. Guyon, and V. Vapnik. 1992. A training algorithm for optimal margin classifiers. In
Proceedings COLT, pages 144–152.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. 2002. The TIGER treebank. In Proceedings of
the First Workshop on Treebanks and Linguistic Theories (TLT).

S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski. 2006. CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the Conference on Computational Natural Language Learning
(CoNLL).

P. M. Camerini, L. Fratta, and F. Maffioli. 1980. The � best spanning arborescences of a network.
Networks, 10(2):91–110.

Y. Censor and S.A. Zenios. 1997. Parallel optimization: theory, algorithms, and applications. Oxford
University Press.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL).

E. Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of the Annual Meeting of the
North American Chapter of the Association for Computational Linguistics (ACL).

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang, and Z. Gao. 2003. Sinica Treebank: Design
criteria, representational issues and implementation. In Abeillé (Abeillé 2003), chapter 13, pages
231–248.

Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400.

M. Civit Torruella and Ma A. Martí Antonín. 2002. Design principles for a Spanish treebank. In
Proceedings of the First Workshop on Treebanks and Linguistic Theories (TLT).

S. Clark and J.R. Curran. 2004. Parsing the WSJ using CCG and log-linear models. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL).

32

McDonald et al. Multi-Lingual Dependency Parsing

M. Collins and N. Duffy. 2002. New ranking algorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

M. Collins and B. Roark. 2004. Incremental parsing with the perceptron algorithm. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL).

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. 1999. A statistical parser for Czech. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL).

M. Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the Empirical Methods in Natural Language Processing
(EMNLP).

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. 1990. Introduction to Algorithms. MIT Press/McGraw-Hill.
K. Crammer and Y. Singer. 2001. On the algorithmic implementation of multiclass kernel based vector

machines. Journal of Machine Learning Research.
K. Crammer and Y. Singer. 2003. Ultraconservative online algorithms for multiclass problems. Journal of

Machine Learning Research.
K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003. Online passive aggressive algorithms. In

Proceedings of Neural Information Processing Systems (NIPS).
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006. Online passive aggressive

algorithms. Journal of Machine Learning Research.
A. Culotta and J. Sorensen. 2004. Dependency tree kernels for relation extraction. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics (ACL).
Y. Ding and M. Palmer. 2005. Machine translation using probabilistic synchronous dependency insertion

grammars. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL).

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Žabokrtsky, and A. Žele. 2006. Towards a Slovene
dependency treebank. In Proceedings of the Fifth International Conference on Language Resources and
Evaluation (LREC).

J. Early. 1968. An Efficient Context-Free Parsing Algorithm. Ph.D. thesis, Carnegie Mellon University.
J. Edmonds. 1967. Optimum branchings. Journal of Research of the National Bureau of Standards,

71B:233–240.
J. Einarsson. 1976. Talbankens skriftspråkskonkordans.
J. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of

the International Conference on Computational Linguistics (COLING).
D. Eppstein. 1990. Finding the k smallest spanning trees. In 2nd Scandanavian Workshop on Algorithm

Theory.
K. Foth, W. Menzel, and I. Schröder. 2000. A transformation-based parsing technique with anytime

properties. In Proceedings of the International Workshop on Parsing Technologies (IWPT).
Y. Freund and R.E. Schapire. 1999. Large margin classification using the perceptron algorithm. Machine

Learning, 37(3):277–296.
H. Gaifman. 1965. Dependency systems and phrase-structure systems. Information and Control.
L. Georgiadis. 2003. Arborescence optimization problems solvable by Edmonds’ algorithm. Theoretical

Computer Science, 301:427 – 437.
J. Hajič, E. Hajičová, P. Pajas, J. Panevova, P. Sgall, and B. Vidova Hladka. 2001. The Prague Dependency

Treebank 1.0 CDROM. Linguistics Data Consortium Cat. No. LDC2001T10.
J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška. 2004. Prague Arabic Dependency Treebank:

Development in data and tools. In Proceedings of the NEMLAR International Conference on Arabic
Language Resources and Tools, pages 110–117.

J. Hajič. 1998. Building a syntactically annotated corpus: The Prague dependency treebank. Issues of
Valency and Meaning, pages 106–132.

M. P. Harper and R. A. Helzerman. 1995. Extensions to constraint dependency parsing for spoken
language processing. Computer Speech and Language.

D. G. Hays. 1964. Dependency theory: A formalism and some observations. Language, 40(4):511–525.
X. He, R. Zemel, and M. Carreira-Perpinan. 2004. Multiscale conditional random fields for image

labelling. In Proceedings of Conference on Vision and Pattern Recognition.
J. Henderson. 2003. Inducing history representations for broad coverage statistical parsing. In Proceedings

of the Joint Conference on Human Language Technology and North American Chapter of the
Association for Computational Linguistics (HLT/NAACL).

33

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

H. Hirakawa. 2001. Semantic dependency analysis method for Japanese based on optimum tree search
algorithm. In Proceedings of the Pacific Association for Computational Linguistics.

L. Huang and D. Chiang. 2005. Better � -best parsing. In Proceedings of the International Workshop on
Parsing Technologies (IWPT).

R. Hudson. 1984. Word Grammar. Blackwell.
A.K. Joshi. 1985. Tree adjoining grammars: How much context-sensitivity is required to provide

reasonable structural descriptions? Natural Language Parsing.
S. Kahane, A. Nasr, and O Rambow. 1998. Pseudo-projectivity: A polynomially parsable non-projective

dependency grammar. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL).

Y. Kawata and J. Bartels. 2000. Stylebook for the Japanese Treebank in VERBMOBIL. Verbmobil-Report
240, Seminar für Sprachwissenschaft, Universität Tübingen.

D. Klein. 2004. The Unsupervised Learning of Natural Language Structure. Ph.D. thesis, Stanford
University.

M. T. Kromann. 2003. The Danish Dependency Treebank and the underlying linguistic theory. In
Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT).

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of the International Conference on Machine
Learning.

D. Lin. 1998. Dependency-based evaluation of MINIPAR. In Workshop on the Evaluation of Parsing
Systems.

D.M. Magerman. 1995. Statistical decision-tree models for parsing. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL).

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated corpus of English: the
Penn Treebank. Computational Linguistics, 19(2):313–330.

H. Maruyama. 1990. Structural disambiguation with constraint propagation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL).

A. McCallum. 2003. Efficiently inducing features of conditional random fields. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence.

R. McDonald and F. Pereira. 2005. Identifying gene and protein mentions in text using conditional random
fields. BMC Bioinformatics, 6:Supp1(S6).

R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In
Proceedings of the Annual Meeting of the European American Chapter of the Association for
Computational Linguistics (ACL).

R. McDonald, K. Crammer, and F. Pereira. 2005a. Online large-margin training of dependency parsers. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL).

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the Joint Conference on Human Language Technology and
Empirical Methods in Natural Language Processing (HLT/EMNLP).

R. McDonald, K. Lerman, and F. Pereira. 2006. Multilingual dependency analysis with a two-stage
discriminative parser. In Proceedings of the Conference on Computational Natural Language Learning
(CoNLL).

R. McDonald. 2006. Discriminative Training and Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

I.A. Meĺčuk. 1988. Dependency Syntax: Theory and Practice. State University of New York Press.
R. Moore. 2005. A discriminative framework for bilingual word alignment. In Proceedings of the Joint

Conference on Human Language Technology and Empirical Methods in Natural Language Processing
(HLT/EMNLP).

P. Neuhaus and N. Böker. 1997. The complexity of recognition of linguistically adequate dependency
grammars. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL).

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets TIGER: Reconstructing a Swedish treebank from
antiquity. In Proceedings of the NODALIDA Special Session on Treebanks.

J. Nivre and J. Nilsson. 2005. Pseudo-projective dependency parsing. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL).

J. Nivre and M. Scholz. 2004. Deterministic dependency parsing of english text. In Proceedings of the
International Conference on Computational Linguistics (COLING).

Joakim Nivre. 2004. Penn2malt. http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html.

34

McDonald et al. Multi-Lingual Dependency Parsing

J. Nivre. 2005. Dependency grammar and dependency parsing. Technical Report MSI report 05133, Växjö
University: School of Mathematics and Systems Engineering.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür. 2003. Building a Turkish treebank. In Abeillé
(Abeillé 2003), chapter 15.

A. Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In Proceedings of the
Empirical Methods in Natural Language Processing (EMNLP), pages 133–142.

A. Ratnaparkhi. 1999. Learning to parse natural language with maximum entropy models. Machine
Learning, 34:151–175.

K. Ribarov. 2004. Automatic building of a dependency tree. Ph.D. thesis, Charles University.
S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell, and M. Johnson. 2002. Parsing the Wall Street

Journal using a lexical-functional grammar and discriminative estimation techniques. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL).

B. Roark, M. Saraclar, M. Collins, and M. Johnson. 2004. Discriminative language modeling with
conditional random fields and the perceptron algorithm. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

F. Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

P. Sgall, E. Hajičová, and J. Panevová. 1986. The Meaning of the Sentence in Its Pragmatic Aspects.
Reidel.

F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In Proceedings of the Joint
Conference on Human Language Technology and North American Chapter of the Association for
Computational Linguistics (HLT/NAACL), pages 213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman. 2002. Automatic paraphrase acquisition from news
articles. In Proceedings of the Human Language Technology Conference (HLT).

K. Simov and P. Osenova. 2003. Practical annotation scheme for an HPSG treebank of Bulgarian. In
Proceedings of the 4th International Workshop on Linguistically Interpreteted Corpora (LINC), pages
17–24.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov. 2005. Design and implementation of the Bulgarian
HPSG-based treebank. In Journal of Research on Language and Computation – Special Issue, pages
495–522. Kluwer Academic Publishers.

D. Sleator and D. Temperley. 1993. Parsing English with a link grammar. In Proceedings of the
International Workshop on Parsing Technologies (IWPT).

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning syntactic patterns for automatic hypernym discovery.
In Proceedings of Neural Information Processing Systems (NIPS).

M. Steedman. 2000. The Syntactic Process. MIT Press.
P. Tapanainen and T. Järvinen. 1997. A non-projective dependency parser. In Proceedings of the 5th

Conference on Applied Natural Language Processing.
R.E. Tarjan. 1977. Finding optimum branchings. Networks, 7:25–35.
B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin Markov networks. In Proceedings of Neural

Information Processing Systems (NIPS).
B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. 2004. Max-margin parsing. In Proceedings of

the Empirical Methods in Natural Language Processing (EMNLP).
B. Taskar. 2004. Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,

Stanford.
L. Tesnière. 1959. Éléments de syntaxe structurale. Editions Klincksieck.
E.F. Tjong Kim Sang and F. De Meulder. 2003. Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition. In Proceedings of the Conference on Computational
Natural Language Learning (CoNLL).

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector learning for interdependent
and structured output spaces. In Proceedings of the International Conference on Machine Learning.

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord. 2002. The Alpino dependency treebank. In
Computational Linguistics in the Netherlands (CLIN).

W. Wang and M. P. Harper. 2004. A statistical constraint dependency grammar (CDG) parser. In Workshop
on Incremental Parsing: Bringing Engineering and Cognition Together (ACL).

N. Xue, F. Xia, F. Chiou, and M. Palmer. 2004. The Penn Chinese Treebank: Phrase structure annotation
of a large corpus. Natural Language Engineering.

H. Yamada and Y. Matsumoto. 2003. Statistical dependency analysis with support vector machines. In
Proceedings of the International Workshop on Parsing Technologies (IWPT).

35

Introduction to Data-Driven Dependency Parsing at ESSLLI 2007

D.H. Younger. 1967. Recognition and parsing of context-free languages in time %
�
. Information and

Control, 12(4):361–379.
D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel methods for relation extraction. Journal of

Machine Learning Research, 3:1083–1106.
D. Zeman. 2004. Parsing with a Statistical Dependency Model. Ph.D. thesis, Univerzita Karlova, Praha.

36

Characterizing the Errors of Data-Driven Dependency Parsing Models

Ryan McDonald
Google Inc.

76 Ninth Avenue
New York, NY 10011

ryanmcd@google.com

Joakim Nivre
Växjö University Uppsala University

35195 Växjö 75126 Uppsala
Sweden Sweden
nivre@msi.vxu.se

Abstract

We present a comparative error analysis
of the two dominant approaches in data-
driven dependency parsing: global, exhaus-
tive, graph-based models, and local, greedy,
transition-based models. We show that, in
spite of similar performance overall, the two
models produce different types of errors, in
a way that can be explained by theoretical
properties of the two models. This analysis
leads to new directions for parser develop-
ment.

1 Introduction

Syntactic dependency representations have a long
history in descriptive and theoretical linguistics and
many formal models have been advanced (Hudson,
1984; Mel’čuk, 1988; Sgall et al., 1986; Maruyama,
1990). A dependency graph of a sentence repre-
sents each word and its syntactic modifiers through
labeled directed arcs, as shown in Figure 1, taken
from the Prague Dependency Treebank (Böhmová et
al., 2003). A primary advantage of dependency rep-
resentations is that they have a natural mechanism
for representing discontinuous constructions, aris-
ing from long distance dependencies or free word
order, through non-projective dependency arcs, ex-
emplified by the arc from jedna to Z in Figure 1.

Syntactic dependency graphs have recently
gained a wide interest in the computational lin-
guistics community and have been successfully em-
ployed for many problems ranging from machine
translation (Ding and Palmer, 2004) to ontology

Figure 1: Example dependency graph.

construction (Snow et al., 2004). In this work we
focus on a common parsing paradigm called data-
driven dependency parsing. Unlike grammar-based
parsing, data-driven approaches learn to produce de-
pendency graphs for sentences solely from an anno-
tated corpus. The advantage of such models is that
they are easily ported to any domain or language in
which annotated resources exist.

As evident from the CoNLL-X shared task on de-
pendency parsing (Buchholz and Marsi, 2006), there
are currently two dominant models for data-driven
dependency parsing. The first is what Buchholz and
Marsi (2006) call the “all-pairs” approach, where ev-
ery possible arc is considered in the construction of
the optimal parse. The second is the “stepwise” ap-
proach, where the optimal parse is built stepwise and
where the subset of possible arcs considered depend
on previous decisions. Theoretically, these models
are extremely different. The all-pairs models are
globally trained, use exact (or near exact) inference
algorithms, and define features over a limited history
of parsing decisions. The stepwise models use local
training and greedy inference algorithms, but define
features over a rich history of parse decisions. How-
ever, both models obtain similar parsing accuracies

McDonald Nivre
Arabic 66.91 66.71

Bulgarian 87.57 87.41
Chinese 85.90 86.92

Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs”) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible arc
labels. Let x = w0, w1, . . . , wn be an input sen-
tence where w0=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V,A) consisting of a set of nodes V and a
set of labeled directed arcs A ⊆ V × V × L, i.e., if
(i, j, l) ∈ A for i, j ∈ V and l ∈ L, then there is an

arc from node i to node j with label l in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1. V = {0, 1, . . . , n}

2. If (i, j, l) ∈ A, then j 6= 0.

3. If (i, j, l) ∈ A, then for all i′ ∈ V − {i} and
l′ ∈ L, (i′, j, l′) /∈ A.

4. For all j ∈ V −{0}, there is a (possibly empty)
sequence of nodes i1, . . . , im∈V and labels
l1, . . . , lm, l∈L such that (0, i1, l1),(i1, i2, l2),
. . . , (im, j, l)∈A.

The constraints state that the dependency graph
spans the entire input (1); that the node 0 is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node 0 to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, l) is non-
projective if not all words k occurring between i and
j in the linear order are dominated by i (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing
For an input sentence, x = w0, w1, . . . , wn consider
the dense graph Gx = (Vx, Ax) where:

1. Vx = {0, 1, . . . , n}
2. Ax = {(i, j, l) | ∀ i, j ∈ Vx and l ∈ L}

Let D(Gx) represent the subgraphs of graph Gx

that are valid dependency graphs for the sentence
x. Since Gx contains all possible labeled arcs, the
set D(Gx) must necessarily contain all valid depen-
dency graphs for x.

Assume that there exists a dependency arc scoring
function, s : V × V × L → R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G = (V,A)) =
∑

(i,j,l)∈A

s(i, j, l)

The score of a dependency arc, s(i, j, l) represents
the likelihood of creating a dependency from word
wi to word wj with the label l. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,

G = arg max
G∈D(Gx)

s(G) = arg max
G∈D(Gx)

∑
(i,j,l)∈A

s(i, j, l)

This problem is equivalent to finding the highest
scoring directed spanning tree in the graph Gx origi-
nating out of the root node 0, which can be solved for
both the labeled and unlabeled case in O(n2) time
(McDonald et al., 2005b). In this approach, non-
projective arcs are produced naturally through the
inference algorithm that searches over all possible
directed trees, whether projective or not.

The parsing models of McDonald work primarily
in this framework. To learn arc scores, these mod-
els use large-margin structured learning algorithms
(McDonald et al., 2005a), which optimize the pa-
rameters of the model to maximize the score mar-
gin between the correct dependency graph and all
incorrect dependency graphs for every sentence in a
training set. The learning procedure is global since
model parameters are set relative to the classification
of the entire dependency graph, and not just over sin-
gle arc attachment decisions. The primary disadvan-
tage of these models is that the feature representa-
tion is restricted to a limited number of graph arcs.
This restriction is required so that both inference and
learning are tractable.

The specific model studied in this work is that
presented by McDonald et al. (2006), which factors
scores over pairs of arcs (instead of just single arcs)
and uses near exhaustive search for unlabeled pars-
ing coupled with a separate classifier to label each
arc. We call this system MSTParser, which is also
the name of the freely available implementation.1

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. a set C of parser configurations, each of which
defines a (partially built) dependency graph G

2. a set T of transitions, each a function t :C→C

3. for every sentence x = w0, w1, . . . , wn,

(a) a unique initial configuration cx

(b) a set Cx of terminal configurations

1http://mstparser.sourceforge.net

A transition sequence Cx,m = (cx, c1, . . . , cm) for a
sentence x is a sequence of configurations such that
cm ∈ Cx and, for every ci (ci 6= cx), there is a tran-
sition t ∈ T such that ci = t(ci−1). The dependency
graph assigned to x by Cx,m is the graph Gm defined
by the terminal configuration cm.

Assume that there exists a transition scoring func-
tion, s : C × T → R. The score of a transition
t in a configuration c, s(c, t), represents the likeli-
hood of taking transition t out of configuration c.
The parsing problem consists in finding a terminal
configuration cm ∈ Cx, starting from the initial
configuration cx and taking the optimal transition
t∗ = arg maxt∈T s(c, t) out of every configuration
c. This can be seen as a greedy search for the optimal
dependency graph, based on a sequence of locally
optimal decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,
where configurations contain a stack for storing par-
tially processed nodes. Transitions in such systems
add arcs to the dependency graph and/or manipu-
late the stack. One example is the transition system
defined by Nivre (2003), which parses a sentence
x = w0, w1, . . . , wn in O(n) time, producing a pro-
jective dependency graph satisfying conditions 1–4
in section 2.1, possibly after adding arcs (0, i, lr)
for every node i 6= 0 that is a root in the output
graph (where lr is a special label for root modifiers).
Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted
by using graph transformation techniques to pre-
process training data and post-process parser output,
so-called pseudo-projective parsing.

To learn transition scores, these systems use dis-
criminative learning methods, e.g., memory-based
learning or support vector machines. The learning
procedure is local since only single transitions are
scored, not entire transition sequences. The primary
advantage of these models is that features are not re-
stricted to a limited number of graph arcs but can
take into account the entire dependency graph built
so far. The main disadvantage is that the greedy
parsing strategy may lead to error propagation.

The specific model studied in this work is that pre-
sented by Nivre et al. (2006), which uses labeled
pseudo-projective parsing with support vector ma-
chines. We call this system MaltParser, which is also

the name of the freely available implementation.2

2.4 Comparison

These models differ primarily with respect to three
important properties.

1. Inference: MaltParser uses a transition-based
inference algorithm that greedily chooses the
best parsing decision based on a trained clas-
sifier and current parser history. MSTParser
instead uses near exhaustive search over a
dense graphical representation of the sentence
to find the dependency graph that maximizes
the score.

2. Training: MaltParser trains a model to make
a single classification decision (choose the next
transition). MSTParser trains a model to maxi-
mize the global score of correct graphs.

3. Feature Representation: MaltParser can in-
troduce a rich feature history based on previ-
ous parser decisions. MSTParser is forced to
restrict the score of features to a single or pair
of nearby parsing decisions in order to make
exhaustive inference tractable.

These differences highlight an inherent trade-off be-
tween exhaustive inference algorithms plus global
learning and expressiveness of feature representa-
tions. MSTParser favors the former at the expense
of the latter and MaltParser the opposite.

3 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi,
2006) was a large-scale evaluation of data-driven de-
pendency parsers, with data from 13 different lan-
guages and 19 participating systems. The official
evaluation metric was the labeled attachment score
(LAS), defined as the percentage of tokens, exclud-
ing punctuation, that are assigned both the correct
head and the correct dependency label.3

The output of all systems that participated in the
shared task are available for download and consti-
tute a rich resource for comparative error analysis.

2http://w3.msi.vxu.se/users/nivre/research/MaltParser.html
3In addition, results were reported for unlabeled attachment

score (UAS) (tokens with the correct head) and label accuracy
(LA) (tokens with the correct label).

The data used in the experiments below are the out-
puts of MSTParser and MaltParser for all 13 lan-
guages, together with the corresponding gold stan-
dard graphs used in the evaluation. We constructed
the data by simply concatenating a system’s output
for every language. This resulted in a single out-
put file for each system and a corresponding single
gold standard file. This method is sound because the
data sets for each language contain approximately
the same number of tokens – 5,000. Thus, evalu-
ating system performance over the aggregated files
can be roughly viewed as measuring system perfor-
mance through an equally weighted arithmetic mean
over the languages.

It could be argued that a language by language
comparison would be more appropriate than com-
paring system performance across all languages.
However, as table Table 1 shows, the difference in
accuracy between the two systems is typically small
for all languages, and only in a few cases is this
difference significant. Furthermore, by aggregating
over all languages we gain better statistical estimates
of parser errors, since the data set for each individual
language is very small.

4 Error Analysis

The primary purpose of this study is to characterize
the errors made by standard data-driven dependency
parsing models. To that end, we present a large set of
experiments that relate parsing errors to a set of lin-
guistic and structural properties of the input and pre-
dicted/gold standard dependency graphs. We argue
that the results can be correlated to specific theoreti-
cal aspects of each model – in particular the trade-off
highlighted in Section 2.4.

For simplicity, all experiments report labeled
parsing accuracies. Identical experiments using un-
labeled parsing accuracies did not reveal any addi-
tional information. Furthermore, all experiments are
based on the data from all 13 languages together, as
explained in section 3.

4.1 Length Factors

It is well known that parsing systems tend to have
lower accuracies for longer sentences. Figure 2
shows the accuracy of both parsing models relative
to sentence length (in bins of size 10: 1–10, 11–20,

10 20 30 40 50 50+
Sentence Length (bins of size 10)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84
De

pe
nd

en
cy

 A
cc

ur
ac

y MSTParser
MaltParser

Figure 2: Accuracy relative to sentence length.

etc.). System performance is almost indistinguish-
able. However, MaltParser tends to perform better
on shorter sentences, which require the greedy in-
ference algorithm to make less parsing decisions. As
a result, the chance of error propagation is reduced
significantly when parsing these sentences. The fact
that MaltParser has a higher accuracy (rather than
the same accuracy) when the likelihood of error
propagation is reduced comes from its richer feature
representation.

Another interesting property is accuracy relative
to dependency length. The length of a dependency
from word wi to word wj is simply equal to |i− j|.
Longer dependencies typically represent modifiers
of the root or the main verb in a sentence. Shorter
dependencies are often modifiers of nouns such as
determiners or adjectives or pronouns modifying
their direct neighbours. Figure 3 measures the pre-
cision and recall for each system relative to depen-
dency lengths in the predicted and gold standard de-
pendency graphs. Precision represents the percent-
age of predicted arcs of length d that were correct.
Recall measures the percentage of gold standard arcs
of length d that were correctly predicted.

Here we begin to see separation between the two
systems. MSTParser is far more precise for longer
dependency arcs, whereas MaltParser does better
for shorter dependency arcs. This behaviour can
be explained using the same reasoning as above:
shorter arcs are created before longer arcs in the
greedy parsing procedure of MaltParser and are less
prone to error propagation. Theoretically, MST-
Parser should not perform better or worse for edges
of any length, which appears to be the case. There
is still a slight degradation, but this can be attributed
to long dependencies occurring more frequently in
constructions with possible ambiguity. Note that

even though the area under the curve is much larger
for MSTParser, the number of dependency arcs with
a length greater than ten is much smaller than the
number with length less than ten, which is why the
overall accuracy of each system is nearly identical.
For all properties considered here, bin size generally
shrinks in size as the value on the x-axis increases.

4.2 Graph Factors

The structure of the predicted and gold standard de-
pendency graphs can also provide insight into the
differences between each model. For example, mea-
suring accuracy for arcs relative to their distance to
the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we
define this distance as the number of arcs in the re-
verse path from the modifier of the arc to the root.
Figure 4 plots the precision and recall of each sys-
tem for arcs of varying distance to the root. Preci-
sion is equal to the percentage of dependency arcs in
the predicted graph that are at a distance of d and are
correct. Recall is the percentage of dependency arcs
in the gold standard graph that are at a distance of d
and were predicted.

Figure 4 clearly shows that for arcs close to the
root, MSTParser is much more precise than Malt-
Parser, and vice-versa for arcs further away from the
root. This is probably the most compelling graph
given in this study since it reveals a clear distinction:
MSTParser’s precision degrades as the distance to
the root increases whereas MaltParser’s precision in-
creases. The plots essentially run in opposite direc-
tions crossing near the middle. Dependency arcs fur-
ther away from the root are usually constructed early
in the parsing algorithm of MaltParser. Again a re-
duced likelihood of error propagation coupled with
a rich feature representation benefits that parser sub-
stantially. Furthermore, MaltParser tends to over-
predict root modifiers, because all words that the
parser fails to attach as modifiers are automatically
connected to the root, as explained in section 2.3.
Hence, low precision for root modifiers (without a
corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behaviour of MSTParser is a little trickier to
explain. One would expect that its errors should be
distributed evenly over the graph. For the most part
this is true, with the exception of spikes at the ends

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9
De

pe
nd

en
cy

 P
re

cis
io

n MSTParser
MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 3: Dependency arc precision/recall relative to predicted/gold dependency length.

of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision – usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j, l)
and (i′, j′, l′) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
i = i′. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more

precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span

2 4 6 8 10
Distance to Root

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9
De

pe
nd

en
cy

 P
re

cis
io

n MSTParser
MaltParser

2 4 6 8 10
Distance to Root

0.76

0.78

0.8

0.82

0.84

0.86

0.88

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 4: Dependency arc precision/recall relative to predicted/gold distance to root.

0 2 4 6 8 10+
Number of Modifier Siblings

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 2 4 6 8 10+
Number of Modifier Siblings

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 5: Dependency arc precision/recall relative to number of predicted/gold siblings.

longer distances, while nouns and pronouns are typ-
ically attached to verbs and therefore occur lower in
the graph, with shorter distances. Empirically, ad-
verbs resemble verbs and conjunctions with respect
to root distance but group with nouns and pronouns
for dependency length, so the former appears to be
more important. In addition, both conjunctions and
adverbs tend to have a high number of siblings, mak-
ing the results consistent with the graph in Figure 5.

Adpositions and especially adjectives constitute
a puzzle, having both high average root distance
and low average dependency length. Adpositions do
tend to have a high number of siblings on average,
which could explain MSTParser’s performance on
that category. However, adjectives on average occur
the furthest away from the root, have the shortest
dependency length and the fewest siblings. As such,
we do not have an explanation for this behaviour.

In the top half of Figure 8, we consider precision
and recall for dependents of the root node (mostly
verbal predicates), and for subjects and objects. As
already noted, MSTParser has considerably better
precision (and slightly better recall) for the root cat-
egory, but MaltParser has an advantage for the nomi-
nal categories, especially subjects. A possible expla-
nation for the latter result, in addition to the length-
based and graph-based factors invoked before, is that

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Verb Noun Pron Adj Adv Adpos Conj

Part of Speech (POS)

La
be

le
d

At
ta

ch
m

en
t S

co
re

 (L
AS

)

MSTParser
MaltParser

Figure 7: Accuracy for different parts of speech.

MaltParser integrates labeling into the parsing pro-
cess, so that previously assigned dependency labels
can be used as features, which may be important to
disambiguate subjects and objects.

Finally, in the bottom half of Figure 8, we dis-
play precision and recall for coordinate structures,
divided into different groups depending on the type
of analysis adopted in a particular treebank. The cat-
egory CCH (coordinating conjunction as head) con-
tains conjunctions analyzed as heads of coordinate
structures, with a special dependency label that does
not describe the function of the coordinate structure
in the larger syntactic structure, a type of category
found in the so-called Prague style analysis of coor-
dination and used in the data sets for Arabic, Czech,

0 1 2 3 4 5 6 7+
Non-Projective Arc Degree

0.55

0.6

0.65

0.7

0.75

0.8

0.85
De

pe
nd

en
cy

 P
re

cis
io

n MSTParser
MaltParser

0 1 2 3 4 5 6 7+
Non-Projective Arc Degree

0.6

0.65

0.7

0.75

0.8

0.85

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 6: Dependency arc precision/recall relative to predicted/gold degree of non-projectivity.

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Root Subj Obj

Dependency Type (DEP)

De
pe

nd
en

cy
 P

re
cis

io
n

MSTParser
MaltParser

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

Root Subj Obj

Dependency Type (DEP)
De

pe
nd

en
cy

 R
ec

al
l

MSTParser
MaltParser

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CCH CCD CJCC CJCJ

Dependency Type (DEP)

De
pe

nd
en

cy
 P

re
cis

io
n

MSTParser
MaltParser

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CCH CCD CJCC CJCJ

Dependency Tyle (DEP)

De
pe

nd
en

cy
 R

ec
al

l

MSTParser
MaltParser

Figure 8: Precision/recall for different dependency types.

and Slovene. The category CCD (coordinating con-
junction as dependent) instead denotes conjunctions
that are attached as dependents of one of the con-
juncts with a label that only marks them as conjunc-
tions, a type of category found in the data sets for
Bulgarian, Danish, German, Portuguese, Swedish
and Turkish. The two remaining categories con-
tain conjuncts that are assigned a dependency label
that only marks them as conjuncts and that are at-
tached either to the conjunction (CJCC) or to an-
other conjunct (CJCJ). The former is found in Bul-
garian, Danish, and German; the latter only in Por-
tuguese and Swedish. For most of the coordination
categories there is little or no difference between the
two parsers, but for CCH there is a difference in both
precision and recall of almost 20 percentage points
to MSTParser’s advantage. This can be explained by

noting that, while the categories CCD, CJCC, and
CJCJ denote relations that are internal to the coor-
dinate structure and therefore tend to be local, the
CCH relations hold between the coordinate struc-
ture and its head, which is often a relation that spans
over a greater distance and is nearer the root of the
dependency graph. It is likely that the difference in
accuracy for this type of dependency accounts for a
large part of the difference in accuracy noted earlier
for conjunctions as a part of speech.

4.4 Discussion

The experiments from the previous section highlight
the fundamental trade-off between global training
and exhaustive inference on the one hand and ex-
pressive feature representations on the other. Error
propagation is an issue for MaltParser, which typi-

cally performs worse on long sentences, long depen-
dency arcs and arcs higher in the graphs. But this is
offset by the rich feature representation available to
these models that result in better decisions for fre-
quently occurring arc types like short dependencies
or subjects and objects. The errors for MSTParser
are spread a little more evenly. This is expected,
as the inference algorithm and feature representation
should not prefer one type of arc over another.

What has been learned? It was already known that
the two systems make different errors through the
work of Sagae and Lavie (2006). However, in that
work an arc-based voting scheme was used that took
only limited account of the properties of the words
connected by a dependency arc (more precisely, the
overall accuracy of each parser for the part of speech
of the dependent). The analysis in this work not only
shows that the errors made by each system are dif-
ferent, but that they are different in a way that can be
predicted and quantified. This is an important step
in parser development.

To get some upper bounds of the improvement
that can be obtained by combining the strengths of
each models, we have performed two oracle experi-
ments. Given the output of the two systems, we can
envision an oracle that can optimally choose which
single parse or combination of sub-parses to predict
as a final parse. For the first experiment the oracle
is provided with the single best parse from each sys-
tem, say G = (V,A) and G′ = (V ′, A′). The oracle
chooses a parse that has the highest number of cor-
rectly predicted labeled dependency attachments. In
this situation, the oracle accuracy is 84.5%. In the
second experiment the oracle chooses the tree that
maximizes the number of correctly predicted depen-
dency attachments, subject to the restriction that the
tree must only contain arcs from A ∪ A′. This can
be computed by setting the weight of an arc to 1 if
it is in the correct parse and in the set A ∪ A′. All
other arc weights are set to negative infinity. One can
then simply find the tree that has maximal sum of
arc weights using directed spanning tree algorithms.
This technique is similar to the parser voting meth-
ods used by Sagae and Lavie (2006). In this situa-
tion, the oracle accuracy is 86.9%.

In both cases we see a clear increase in accuracy:
86.9% and 84.5% relative to 81% for the individual
systems. This indicates that there is still potential

for improvement, just by combining the two existing
models. More interestingly, however, we can use
the analysis to get ideas for new models. Below we
sketch some possible new directions:

1. Ensemble systems: The error analysis pre-
sented in this paper could be used as inspiration
for more refined weighting schemes for ensem-
ble systems of the kind proposed by Sagae and
Lavie (2006), making the weights depend on a
range of linguistic and graph-based factors.

2. Hybrid systems: Rather than using an ensem-
ble of several parsers, we may construct a sin-
gle system integrating the strengths of each
parser described here. This could defer to
a greedy inference strategy during the early
stages of the parse in order to benefit from a
rich feature representation, but then default to
a global exhaustive model as the likelihood for
error propagation increases.

3. Novel approaches: The two approaches inves-
tigated are each based on a particular combina-
tion of training and inference methods. We may
naturally ask what other combinations may
prove fruitful. For example, what about glob-
ally trained, greedy, transition-based models?
This is essentially what Daumé III et al. (2006)
provide, in the form of a general search-based
structured learning framework that can be di-
rectly applied to dependency parsing. The ad-
vantage of this method is that the learning can
set model parameters relative to errors resulting
directly from the search strategy – such as error
propagation due to greedy search. When com-
bined with MaltParser’s rich feature represen-
tation, this could lead to significant improve-
ments in performance.

5 Conclusion

We have presented a thorough study of the dif-
ference in errors made between global exhaustive
graph-based parsing systems (MSTParser) and lo-
cal greedy transition-based parsing systems (Malt-
Parser). We have shown that these differences can
be quantified and tied to theoretical expectations of
each model, which may provide insights leading to
better models in the future.

References
A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká.

2003. The PDT: A 3-level annotation scenario. In
A. Abeillé, editor, Treebanks: Building and Using
Parsed Corpora, chapter 7. Kluwer Academic Publish-
ers.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In Proc. CoNLL.

Hal Daumé III, John Langford, and Daniel Marcu. 2006.
Search-based structured prediction. In Submission.

Y. Ding and M. Palmer. 2004. Synchronous dependency
insertion grammars: A grammar formalism for syntax
based statistical MT. In Workshop on Recent Advances
in Dependency Grammars (COLING).

R. Hudson. 1984. Word Grammar. Blackwell.

H. Maruyama. 1990. Structural disambiguation with
constraint propagation. In Proc. ACL.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. HLT/EMNLP.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency analysis with a two-stage discrim-
inative parser. In Proc. CoNLL.

I.A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proc. ACL.

J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S. Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines. In Proc. CoNLL.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proc. IWPT.

J. Nivre. 2006. Constraints on non-projective depen-
dency parsing. In Proc. EACL.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. In Proc. HLT/NAACL.

P. Sgall, E. Hajičová, and J. Panevová. 1986. The Mean-
ing of the Sentence in Its Pragmatic Aspects. Reidel.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In Proc. NIPS.

