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Dependency Grammar and Dependency Parsing

Joakim Nivre

1 Introduction

Despite a long and venerable tradition in descriptive listies, dependency gram-
mar has until recently played a fairly marginal role bothhedretical linguistics
and in natural language processing. The increasing intereependency-based
representations in natural language parsing in recens ygmears to be motivated
both by the potential usefulness of bilexical relationsisachbiguation and by the
gains in efficiency that result from the more constrainedipgrproblem for these
representations.

In this paper, we will review the state of the art in depengepased parsing,
starting with the theoretical foundations of dependen@mgnar and moving on
to consider both grammar-driven and data-driven methadddpendency parsing.
We will limit our attention to systems for dependency pagsim a narrow sense,
i.e. systems where the analysis assigned to an input sentakes the form of a
dependency structure. This means that we will not discustesys that exploit
dependency relations for the construction of another typemresentation, such
as the head-driven parsing models of Collins (1997, 1999nreldver, we will
restrict ourselves to systems for full parsing, which meitwas we will not deal
with systems that produce a partial or underspecified reptaton of dependency
structure, such as Constraint Grammar parsers (Karls€8; Karlsson et al.,
1995).

2 Dependency Grammar

Although its roots may be traced back tarihi's grammar of Sanskrit several cen-
turies before the Common Era (Kruijff, 2002) and to medi¢kabries of grammar
(Covington, 1984), dependency grammar has largely degdlag a form for syn-
tactic representation used by traditional grammarianse@ally in Europe, and
particularly in Classical and Slavic domains (M=lk, 1988). This grammatical
tradition can be said to culminate with the seminal work cfriiere (1959), which
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Figure 1: Constituent structure for English sentence frioenRenn Treebank
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Figure 2: Dependency structure for English sentence franPdnn Treebank

is usually taken as the starting point of the modern themaktradition of depen-
dency grammar.

This tradition comprises a large and fairly diverse familygmmmatical theo-
ries and formalisms that share certain basic assumptiang apntactic structure,
in particular the assumption that syntactic structure st&®f lexical elements
linked by binary asymmetrical relations callddpendenciesThus, the common
formal property of dependency structures, as comparegtesentations based on
constituency is the lack of phrasal nodes. This can be seenrparing the con-
stituency representation of an English sentence in Figutaken from the Wall
Street Journal section of the Penn Treebank (Marcus et393,11994), to the
corresponding dependency representation in Figure 2.

Among the more well-known theories of dependency grammesjdes the
theory of structural syntax developed by Tesei (1959), we find Word Gram-



mar (WG) (Hudson, 1984, 1990), Functional Generative Dpton (FGD) (Sgall

et al., 1986), Dependency Unification Grammar (DUG) (Hejlwi986, 2003),
Meaning-Text Theory (MTT) (MeEuk, 1988), and Lexicase (Starosta, 1988). In
addition, constraint-based theories of dependency grarnava a strong tradition,
represented by Constraint Dependency Grammar (CDG) (Manay1990; Harper
and Helzerman, 1995; Menzel and Sither, 1998) and its descendant Weighted
Constraint Dependency Grammar (WCDG) (Sutar, 2002), Functional Depen-
dency Grammar (FDG) (Tapanainen a@ddvinen, 1997;drvinen and Tapanainen,
1998), largely developed from Constraint Grammar (CG) [¢&m, 1990; Karls-
son et al., 1995), and finally Topological Dependency Gram{hRG) (Duchier
and Debusmann, 2001), subsequently evolved into ExtenBiependency Gram-
mar (XDG) (Debusmann et al., 2004). A synthesis of dependgremmar and
categorial grammar is found in the framework of Dependencgn@nar Logic
(DGL) (Kruijff, 2001).

We will make no attempt at reviewing all these theories hbrstead, we will
try to characterize their common core of assumptions, cedtaépon the notion of
dependency, and discuss major points of divergence, suble éssue of projective
versus non-projective representations.

2.1 The Notion of Dependency

The fundamental notion afependencig based on the idea that the syntactic struc-
ture of a sentence consists of binary asymmetrical relati@iween the words of
the sentence. The idea is expressed in the following waydrogening chapters
of Tesnere (1959):

La phrase est uansemble organé&dont lestléements constituants sont
les mots [1.2] Tout mot qui fait partie d’'une phrase cesse par lui-
méme détre iso comme dans le dictionnaire. Entre lui et ses voisins,
I'esprit apercoit desonnexionsdont I'ensemble forme la charpente
de la phrase. [1.3] Les connexions structurdtablissent entre les
mots des rapports diependanceChaque connexion unit en principe
un termesugerieur a un termeinférieur. [2.1] Le terme su@rieur
recoit le nom deégissant Le terme inérieur regoit le nom deubor-
donré. Ainsi dans la phrasélfred parle|...], parle est le Egissant
etAlfredle subordona. [2.2] (Tesrére, 1959, 11-13, emphasis in the
original)!

1English translation (by the author): ‘The sentence isaganized wholethe constituent ele-
ments of which arevords [1.2] Every word that belongs to a sentence ceases by itsb# isolated
as in the dictionary. Between the word and its neighborsiytimel perceivesonnectionsthe totality



In the terminology used in this paper, a dependency reldibdds between head
and adependent Alternative terms in the literature agovernorand regentfor
head (cf. Tesnere’srégissant and modifier for dependentcf. Tesnére'ssubor-
donre).

Criteria for establishing dependency relations, and fetiiguishing the head
and the dependent in such relations, are clearly of cemabitance for depen-
dency grammar. Such criteria have been discussed not oriheiniependency
grammar tradition, but also within other frameworks whére hotion of syntac-
tic head plays an important role, including all constituebased frameworks that
subscribe to some version &f theory (Chomsky, 1970; Jackendoff, 1977). Here
are some of the criteria that have been proposed for idémgify syntactic relation
between a heaf and a depender in a constructior” (Zwicky, 1985; Hudson,
1990):

1. H determines the syntactic category(®fand can often replacg.
. H determines the semantic categorygf D gives semantic specification.

. H is obligatory;D may be optional.

2
3
4. H selectsD and determines whethér is obligatory or optional.
5. The form ofD depends ori{ (agreement or government).

6

. The linear position oD is specified with reference .

It is clear that this list contains a mix of different criterisome syntactic and
some semantic, and one may ask whether there is a singleecthetion of
dependency corresponding to all the different criteriaisTtas led some theo-
rists, such as Hudson (1990), to suggest that the conceptaaf has a prototype
structure, i.e. that typical instances of this categorig8aall or most of the criteria
while more peripheral instances satisfy fewer. Other asthave emphasized the
need to distinguish different kinds of dependency relatidkccording to MelEuk
(1988), the word forms of a sentence can be linked by thresstgpdependencies:
morphologica) syntacticandsemantic According to Nikula (1986), we must dis-
tinguish between syntactic dependencgirdocentri@ndexocentriconstructions
(Bloomfield, 1933).

of which forms the structure of the sentence. [1.3] The stmat connections establistependency
relations between the words. Each connection in principiées asuperiorterm and arinferior
term. [2.1] The superior term receives the nagogernor The inferior term receives the narseb-
ordinate Thus, in the sentencilfred parlel...], parleis the governor andlfred the subordinate.
[2.2]



Thus, in Figure 2, th&iMoD relation holding between the nounarketsand
the adjectivdinancialis an endocentric construction, where the head can replace
the whole without disrupting the syntactic structure:

Economic news had little effect on [financial] markets. (2)

Endocentric constructions may satisfy all the criteritelikabove, although number
4 is usually considered less relevant, since dependentslmcentric constructions
are taken to be optional and not selected by their heads. Byasi, thePmoD
relation holding between the preposition and the noumarketsis an exocentric
construction, where the head cannot readily replace théewho

Economic news had little effect on [markets]. (2)

Exocentric constructions, by their definition, fail on eribn number 1, at least
with respect to subsitutability of the head for the wholet, tthey may satisfy the
remaining criteria. Considering the rest of the relatioreneplified in Figure 2, the
sBJandoBJrelations are clearly exocentric, and tii@ob relation from the noun
newsto the adjectiveEconomicclearly endocentric, while the remainimguoD
relations (effect- little, effect— on) have a more unclear status.

The distinction between endocentric and exocentric caotans is also re-
lated to the distinction betweemead-complemerdnd head-modifier(or head-
adjunc) relations found in many contemporary syntactic theorgsce head-
complement relations are exocentric while head-modifiaticns are endocentric.
Many theories also recognize a third kind of relation, ltead-specifierelation,
typically exemplified by the determiner-noun relation, ahis exocentric like the
head-complement relation, but where there is no clear thateof the dependent
element by the head.

The distinction between complements and modifiers is ofefimeld in terms
of valency which is a central notion in the theoretical tradition ofpdadency
grammar. Although the exact characterization of this motliffers from one theo-
retical framework to the other, valency is usually relathe semantic predicate-
argument structure associated with certain classes ofrleggein particular verbs
but sometimes also nouns and adjectives. The idea is thatettieimposes re-
quirements on its syntactic dependents that reflect itsgregation as a semantic
predicate. Dependents that correspond to arguments oféldécpte can be oblig-
atory or optional in surface syntax but can only occur oncth wach predicate
instance. By contrast, dependents that do not correspoarytonents can have
more than one occurrence with a single predicate instarctéeaua to be optional.
Thevalency frameof the verb is normally taken to include argument dependents
but some theories also allow obligatory non-arguments todaded (Sgall et al.,
1986).



The notion of valency will not play a central role in the pnetspaper, but we
will sometimes use the termslency-bounéndvalency-fre¢o make a rough dis-
tinction between dependents that are more or less closkltedeto the semantic
interpretation of the head. Returning to Figure 2, the sutlgad the object would
normally be treated as valency-bound dependents of thehaethwhile the adjec-
tival modifiers of the nounsewsandmarketswould be considered valency-free.
The prepositional modification of the nowffectmay or may not be treated as
valency-bound, depending on whether the entity undergihiegffect is supposed
to be an argument of the noefffector not.

While head-complement and head-modifier structures hawrlg Etraight-
forward analysis in dependency grammar, there are also mamstructions that
have a relatively unclear status. This group includes coaons that involve
grammatical function words, such as articles, complemmergiand auxiliary verbs,
but also structures involving prepositional phrases. Res¢ constructions, there
is no general consensus in the tradition of dependency gearasto whether they
should be analyzed as head-dependent relations at all faswl, what should be
regarded as the head and what should be regarded as the depdrat example,
some theories regard auxiliary verbs as heads taking lexéchs as dependents;
other theories make the opposite assumption; and yet diberies assume that
verb chains are connected by relations that are not depeiedéan the usual sense.

Another kind of construction that is problematic for depemcly grammar (as
for most theoretical traditions) isoordination According to Bloomfield (1933),
coordination is an endocentric construction, since it aorstnot only one but sev-
eral heads that can replace the whole construction syoadlgti However, this
characterization raises the question of whether coordinatan be analyzed in
terms of binary asymmetrical relations holding between adrend a dependent.
Again, this question has been answered in different waysitbgrent theories
within the dependency grammar tradition.

In conclusion, the theoretical tradition of dependencyrgrear is united by the
assumption that an essential part of the syntactic streiciisentences resides in
binary asymmetrical relations holding between lexicairedats. Moreover, there
is a core of syntactic constructions for which the analysismgby different frame-
works agree in all important respects. However, there ae iahportant differ-
ences with respect to whether dependency analysis is adgoraghaust syntactic
analysis, and with respect to the analysis of certain tyfpesyotactic construc-
tions. We will now turn to a discussion of some of the more ingat points of
divergence in this tradition.



2.2 Varieties of Dependency Grammar

Perhaps the most fundamental open question in the tradifidapendency gram-
mar is whether the notion of dependency is assumed to be hohenessaryut
alsosufficientfor the analysis of syntactic structure in natural languatjgis as-
sumption is not made in the theory of Tesm (1959), which is based on the three
complementary concepts obnnectior(connexion)junction(jonction) andrans-
fer (translation), where connection corresponds to deperydehdhe quotation on
page 3) but where junction and transfer are other kinds afio#ls that can hold
between the words of a sentence. More precisely, junctitreiselation that holds
between coordinated items that are dependents of the saadeohdneads of the
same dependent, while transfer is the relation that holtsda a function word
or other element that changes the syntactic category ofiealeadement so that it
can enter into different dependency relations. An examptaelatter is the rela-
tion holding between the prepositiaie andPierre in the constructione livre de
Pierre (Pierre’s book), where the prepositide allows the proper nameierre to
modify a noun, a dependency relation otherwise reserveddpctives. Another
way in which theories may depart from a pure dependency sisaly to allow a
restricted form of constituency analysis, so that depecidsrcan hold between
strings of words rather than single words. This possibititgxploited, to different
degrees, in the frameworks of Hellwig (1986, 2003), MekK (1988) and Hudson
(1990), notably in connection with coordination.

A second dividing line is that between mono-stratal and ratitatal frame-
works, i.e. between theories that rely on a single syntaeficesentation and theo-
ries that posit several layers of representation. In faostrtheories of dependency
grammar, in contrast to frameworks for dependency parsiagwill be discussed
in Section 3, are multi-stratal, at least if semantic repnéstions are considered to
be a stratum of the theory. Thus, in FGD (Sgall et al., 1986)dlis both amna-
lytical layer, which can be characterized as a surface syntactieseptation, and
a tectogrammaticalayer, which can be regarded as a deep syntactic (or shallow
semantic) representation. In a similar fashion, MTT (MeK, 1988) recognizes
both surface syntactianddeep syntacticepresentations (in addition to represen-
tations of deep phonetics, surface morphology, deep mtwghi@and semantics).
By contrast, Tesmire (1959) uses a single level of syntactic representétierso-
calledstemmawhich on the other hand includes junction and transfer olitamh
to syntactic connectiofiThe framework of XDG (Debusmann et al., 2004) can be
seen as a compromise in that it allows multiple layers of ddpacy-based linguis-
tic representations but requires that all layersdionensionss they are called in

2Tesnere’s representations also incluaieaphors which are described as supplementary seman-
tic connections without corresponding syntactic conest



XDG, share the same set of nodes. This is in contrast to gmbkie FGD, where
e.g. function words are present in the analytical layer lotiimthe tectogrammat-
ical layer.

The different requirements of XDG and FGD point to anotheué namely
what can constitute a node in a dependency structure. Adthooiost theories
agree that dependency relations hold betwegical elements, rather thahrases
they can make different assumptions about the nature oé tllesnents. The most
straightforward view is that the nodes of the dependenaictire are simply the
word forms occurring in the sentence, which is the view agdpb most parsing
systems based on dependency grammar. But it is also possiddastruct depen-
dency structures involving more abstract entities, sudemsnas or lexemes, es-
pecially in deeper syntactic representations. Anotheatian is that the elements
may involve several word forms, constitutingdessociate nucleugnucleus dis-
soci) in the terminology of Tesaie (1959), or alternatively correspond to smaller
units than word forms, as in the morphological dependerafiéel’ Cuk (1988).

A fourth dimension of variation concerns the inventory oésific dependency
types posited by different theories, i.e. functional catezs like sBJ, 0BJ and
NMOD that are used to label dependency arcs in the representatieigure 2.
Broadly speaking, most theories either assume a set of mdexs-oriented gram-
matical functions, such asubject object adverbial etc., with a more or less elab-
orate subclassification, or a set of more semantically taterole types, such as
agent patient goal, etc., belonging to the tradition cfse rolesor thematic roles
(Fillmore, 1968; Jackendoff, 1972; Dowty, 1989)Multi-stratal theories often
combine the two relation types. Thus, FGD (Sgall et al., J98&s grammatical
functions in the analytical layer and semantic roles in #wdgrammatical layer.
An alternative scheme of representation, which is found TT\MMel’ Cuk, 1988),
is to use numerical indices for valency-bound dependentgftect a canonical
ordering of arguments (argument 1, 2, 3, etc.) and to useigége labels only
for valency-free dependents. Finally, it is also possibleise unlabeled depen-
dency structures, although this is more common in practiaeding systems than
in linguistic theories.

There are several open issues in dependency grammar thatdao with
formal properties of representations. Since a dependaprgsentation consists
of lexical elements linked by binary asymmetrical relaipit can be defined as
a labeled directed graphwhere the set of nodes (or vertices) is the set of lexi-
cal elements (as defined by the particular framework), aadsét of labeled arcs

3The notion of a semantic role can be traced backaior?s kanakatheory (Misra, 1966), which
is sometimes also seen as the earliest manifestation ohdepey grammar. The notion of a gram-
matical function also has a long history that extends at leethe work of Appolonius Dyscolus in
the second century of the Common Era (Robins, 1967).



represent dependency relations from heads to dependentsdér to provide a
complete syntactic analysis of a sentence, the graph magbatonnectedo that
every node is related to at least one other node @d&l’ 1988). Again, we refer
to Figure 2 as an illustration of this representation, whbeenodes are the word
tokens of the sentence (annotated with parts-of-speeahjhenarcs are labeled
with grammatical function§.

Given this general characterization, we may then imposmuwgsradditional
conditions on these graphs. Two basic constraints thatsmenzed in most ver-
sions of dependency grammar are #iegle-headconstraint, i.e. the assumption
that each node has at most one head, anddlelicityconstraint, i.e. the assump-
tion that the graph should not contain cycles. These twotcainss, together with
connectedness, imply that the graph should be a rootediitten single root node
that is not a dependent of any other node. For example, theseptation in Fig-
ure 2 is a rooted tree with the vehladas the root node. Although these constraints
are assumed in most versions of dependency grammar, treeadsarframeworks
that allow multiple heads as well as cyclic graphs, such as W@ison, 1984,
1990). Another issue that arises for multi-stratal theoisewhether each level of
representation has its own set of nodes, as in most theorieghether they only
define different arc sets on top of the same set of nodes, aB@® ebusmann
et al., 2004).

However, the most important and hotly debated issues coimgeformal rep-
resentations have to do with the relation between depegdsnecture and word
order. According to Tesare (1959), dependency relations belong tostinectural
order (I'ordre structural), which is different from tHaear order (I'ordre linéaire)
of a spoken or written string of words, amstfuctural syntaxs based on the re-
lations that exist between these two dimensions. Most wessof dependency
grammar follow Tesrire in assuming that the nodes of a dependency structure are
not linearly ordered in themselves but only in relation tcaatigular surface real-
ization of this structure. A notable exception to this gatieation is FGD, where
the representations of both the analytical layer and thegeammatical layer are
linearly ordered in order to capture aspects of informasitvacture (Sgall et al.,
1986). In addition, there are frameworks, such as TDG (Darcid Debusmann,
2001), where the linear order is represented by means ofearlinordered de-
pendency structure, the Linear Precedence (LP) tree, Wiglproper dependency
representation, the Immediate Dominance (ID) tree, isdered.

“There seems to be no general consensus in the literaturgpendiency grammar as to whether
the arcs representing dependency relations should be drainting from heads to dependents or
vice versa (or indeed with arrowheads at all). We have chasedopt the former alternative, both
because it seems to be the most common representation itetla¢ure and because it is consistent
with standard practice in graph theory.



However, whether dependency relations introduce a linedering or not,
there may be constraints relating dependency structullesetar realizations. The
most well-known example is the constrainfwbjectivity, first discussed by Lecerf
(1960), Hays (1964) and Marcus (1965), which is related &dbntiguity con-
straint for constituent representations. A dependencptysatisfies the constraint
of projectivity with respect to a particular linear ordertbge nodes if, for every
arch — d and nodew, w occurs betweeh andd in the linear order only ifw
is dominated by, (wheredominatess the reflexive and transitive closure of the
arc relation). For example, the representation in Figure &niexample of aro-
jectivedependency graph, given the linear order imposed by the ol of the
sentence.

The distinction betweeprojective and non-projectivedependency grammar
often made in the literature thus refers to the issue of wérethis constraint is
assumed or not. Broadly speaking, we can say that whereaspmausical sys-
tems for dependency parsing do assume projectivity, mgstraency-based lin-
guistic theories do not. More precisely, most theoreticafiulations of depen-
dency grammar regard projectivity as the norm but also neizeghe need for non-
projective representations of certain linguistic condinns, e.g. long-distance de-
pendencies (Metuk, 1988; Hudson, 1990). It is also often assumed that the co
straint of projectivity is too rigid for the description cihguages with free or flex-
ible word order.

Some multi-stratal theories allow non-projective repnéagons in some layers
but notin others. For example, FGD assumes that tectogrémairpresentations
are projective while analytical representations are ngall®t al., 1986). Similarly,
TDG (Duchier and Debusmann, 2001) assume projectivity fotrees but not for
ID trees. Sometimes a weaker condition caldaharity is assumed, which allows
a nodew to occur between a he&dand a dependertwithout being dominated by
h only if w is a root (Sleator and Temperley, 1993Further relaxations of these
constraints are discussed in Kahane et al. (1998) and Yai{(2003).

The points of divergence considered up till now have all bemrcerned with
aspects of representation. However, as mentioned at thefahd previous sec-
tion, there are also a number of points concerning the satdgdinguistic analysis
where different frameworks of dependency grammar makerdifit assumptions,
in the same way as theories differ also within other tradgioWe will limit our-
selves to a brief discussion of two such points.

The first point concerns the issuegyfntacticversussemanticheads. As noted
in Section 2.1, the criteria for identifying heads and dejests invoke both syn-

5This constraint is related to but not equivalent to the stathahotion of planarity in graph theory
(see, e.g., Grimaldi, 2004).
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tactic and semantic properties. In many cases, theseiarifige the same result,
but in others they diverge. A typical example is found in stled case marking
prepositions, exemplified in the following sentence:

| believe in the system. 3)

According to syntactic criteria, it is natural to treat thejpositionin as a depen-
dent of the verlbelieveand as the head of the noaystem According to semantic
criteria, it is more natural to regasystemas a direct dependent bélieveand to
treatin as a dependent afystem(corresponding to a case marking affix in some
other language$) Most versions of dependency grammar treat the preposition a
the head of the noun, but there are also theories that makepphesite assump-
tion. Similar considerations apply to many constructian@lving one function
word and one content word, such as determiner-noun and eomepitizer-verb
constructions. An elegant solution to this problem is pded by the theory of
Tesnere (1959), according to which the function word and the eosimvord form

a dissociate nucleugnucleus disso@), united by a relation dfransfer (transla-
tion). In multi-stratal theories, it is possible to trea¢ thunction word as the head
only in more surface-oriented layers. For example, to retarexample (3), FGD
would assume that the preposition takes the noun as a dagendke analytical
layer, but in the tectogrammatical layer the prepositiouldde absent and the
noun would instead depend directly on the verb.

The second point concerns the analysis of coordinationghwpiesents prob-
lems for any syntactic theory but which seems to be espgdialld to reconcile
with the idea that syntactic constructions should be amalyin terms of binary
head-dependent relations. Consider the following example

They operate ships and banks. (4)

It seems clear that the phraskips and bankfunctions as a direct object of the
verboperate but it is not immediately clear how this phrase can be givemter-

nal analysis that is compatible with the basic assumptiédgpendency analysis,
since the two nounshipsandbanksseem to be equally good candidates for being
heads. One alternative is to treat the conjunction as the, lasashown in Figure 3
(top), an analysis that may be motivated on semantic groundssaadapted in
FGD. Another alternative, advocated by Mrlk (1988), is to treat the conjunction
as the head only of the second conjunct and analyze the adignms a dependent
of the first conjunct, as shown in Figure Bofton). The arguments for this anal-
ysis are essentially the same as the arguments for an asyimnigit-branching

®A third alternative is to treat botin andsystenas dependents dilieve since it is the verb that
selects the preposition and takes the noun as an argument.

11
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Figure 3: Two analyses of coordination

analysis in constituency-based frameworks. A third opi®to give up a pure
dependency analysis and allow a limited form of phrase stracas in WG (Hud-
son, 1990). A fourth and final variant is the analysis of Tesn{1959), according
to which bothshipsandbanksare dependents of the verb, while the conjunction
marks a relation gjunction(jonction) between the two nouns.

3 Parsing with Dependency Representations

So far, we have reviewed the theoretical tradition of depeny grammar, focusing
on the common core of assumptions as well as major pointsvefgince, rather
than on individual instantiations of this tradition. We Wwibw turn to what is the
main topic of this paper, namely the computational impletaton of syntactic
analysis based on dependency representations, i.e.eapaens involving lexical
nodes, connected by dependency arcs, possibly labeledlggéndency types.
Such implementations may be intimately tied to the develaptrof a particular
theory, such as the PLAIN system based on DUG (Hellwig, 12803) or the
FDG parsing system (Tapanainen armgvinen, 1997; drvinen and Tapanainen,
1998). On the whole, however, the connections between ékieal frameworks
and computational systems are often rather indirect foedépncy-based analysis,
probably more so than for theories and parsers based oritcensty analysis. This
may be due to the relatively lower degree of formalizatiodeendency grammar
theories in general, and this is also part of the reason wiydpic of this section

12



is described as parsing with dependeregresentationsrather than parsing with
dependencgrammar

In discussing dependency-based systems for syntactimgavee will follow
Carroll (2000) and distinguish two broad types of stratebg grammar-driven
approachand thedata-driven approachalthough these approaches are not mutu-
ally exclusive. We will conclude the paper with a brief dission of some of the
potential advantages of using dependency representatiggatactic parsing.

3.1

Grammar-Driven Dependency Parsing

The earliest work on parsing with dependency representati@s intimately tied
to formalizations of dependency grammar that were veryecloscontext-free
grammar, such as the proposals of Hays (1964) and Gaifm#&3)1® the formu-
lation of Gaifman (1965) dependency systerontains three sets of rulés:

1.

2.

3.

Ly: Rules of the formX (Y7 - - - Y; * Yi41 - - - Y},), wherei may equal 0 and/or

n, which say that the categoty may occur with categoriesy, ..., Y, as

dependents, in the order given (wikhin positions).

L1 Rules giving for every categorX the list of words belonging to it
(where each word may belong to more than one category).

L. A rule giving the list of all categories the occurrence ofiethmay
govern a sentence.

A sentence consisting of words, . . ., w,, is analyzed by assigning to it a sequence
of categoriesXy, . .., X;, and a relation of dependendybetween words such that
the following conditions hold (wheré* is the transitive closure of):

gaa b W N P

. For now;, d*(w;, w;).

. For everyw;, there is at most one; such thatl(w;, w;).

. N d*(w;, wy) andwy, is betweenw; andw;, thend* (wy, w;).
. The whole set of word occurrences is connected.by

. Mfws,...,w; areleftdependents and 1, . .., w, right dependents of some

word, andXy, ..., X;, X;11, ..., X, are the categories afy, . . ., w;, w;y1,
co, Why, thenX(X1 e X % Xi+1 s Xn) isarule ofLy.

. The word occurrence); that governs the sentence belongs to a category

listed in L.

"The formulation of Hays (1964) is slightly different but éeplent in all respects.
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Gaifman remarks that 1-4 are general structure requirentleat can be made on
any relation defined on a finite linearly ordered set whethisrd set of categories
or not, while 5-6 are requirements which relate the relatiothe specific gram-
mar given by the three sets of rulés—Li;;. Referring back to the discussion of
graph conditions in Section 2.2, we may first of all note thaif@an defines de-
pendency relations to hold from dependent to head, ratherttie other way round
which is more common in the recent literature. Secondly, @ethat condition 2
corresponds to thsingle-headconstraint and condition 3 to th@ojectivity con-
straint. Conditions 1, 2 and 4 jointly entail that the graptairooted tree, which
is presupposed in condition 6. Finally, it should be poinvetl that this kind of
dependency system only gives an unlabeled dependencysanalince there are
no dependency types used to label dependency relations.

Gaifman (1965) proves several equivalence results rglatsxdependency sys-
tems to context-free grammars. In particular, he showsttietwo systems are
weakly equivalent, i.e. that they both characterize thesclaf context-free lan-
guages. However, he also shows that whereas any dependstemn<an be con-
verted to a strongly equivalent context-free grammar (nwduspecific mapping
between dependency trees and context-free parse treeg)yénse construction is
only possible for a restricted subset of context-free gramgroughly grammars
where all productions are lexicalized).

These results have been invoked to explain the relativedgickerest in depen-
dency grammar within natural language processing for theeguent twenty-five
years or so, based on the erroneous conclusion that depsngi@mmar is only a
restricted variant of context-free grammairfdnen and Tapanainen, 1998 his
conclusion is erroneous simply because the results onlgerarthe specific ver-
sion of dependency grammar formalized by Hays and Gaifmdnchwfor one
thing is restricted to projective dependency structuresveéver, it also worth em-
phasizing that with the increasing importance of problekesiobustness and dis-
ambiguation, issues of (limited) generative capacity Hasesome of their signifi-
cance in the context of natural language parsing. Neverskeit seems largely true
to say that, except for isolated studies of dependency gearaman alternative to
context-free grammar as the basis for transformationahgrar (Robinson, 1970),
dependency grammar has played a marginal role both in gimtheory and in
natural language parsing until fairly recently.

The close relation to context-free grammar in the forméilireof dependency
grammar by Hays and Gaifman means that essentially the saram@ methods

8A similar development seems to have taken place with respamitegorial grammar after the
weak equivalence of a restricted type of categorial gramwiidr context-free grammar was proven
by Bar-Hillel et al. (1960).
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can be used for both types of system. Hence, the parsingthigooutlined in Hays
(1964) is a bottom-up dynamic programming algorithm veryikir to the CKY
algorithm proposed for context-free parsing at about theesiime (Kasami, 1965;
Younger, 1967). The use of dynamic programming algorithnat aire closely
connected to context-free parsing algorithms such as CKivEarley’s algorithm
(Earley, 1970) is a prominent trend also in more recent grarvdniven approaches
to dependency parsing. One example is the link grammar pafsgleator and
Temperley (1991, 1993), which uses a dynamic programmiggriahm imple-
mented as a top-down recursive algorithm with memoizaticexchieve parsing in
O(n?) time. Link grammar is not considered an instance of depesydgrammar
by its creators, and it departs from the traditional view ependency by using
undirected links, but the representations used in link gnamparsing are similar
to dependency representations in that they consist of winklsd by binary rela-
tions. Other examples include a modification of the CKY ailpon (Holan et al.,
1997) and an Earley-type algorithm with left-corner filteriin the prediction step
(Lombardo and Lesmo, 1996; Barbero et al., 1998).

A common property of all frameworks that implement depemngigrarsing as a
form of lexicalized context-free parsing is that they argtnieted to the derivation
of projective dependency structures, although some ofrimadworks allow post-
processing that may introduce non-projective structusdsator and Temperley,
1991, 1993). Many of these frameworks can be subsumed uhdeandtion of
bilexical grammaiintroduced by Eisner (2000). In Eisner’s formulation, akital
grammar consists of two elements:

1. A vocabularyV of terminal symbols (words), containing a distinguished
symbolROOT.

2. For each wordv € V, a pair of deterministic finite-state automagaand
r. Each automaton accepts some regular subseét of

The languagd.(G) defined by a bilexical dependency gramngais defined as
follows:

1. Adependency treis a rooted tree whose nodes are labeled with words from
V', and where the root node is labeled with the special symmbaT. The
children of a node are ordered with respect to each othertenddde itself,
so that the node has boléft childrenthat precede it andght childrenthat
follow it.

2. A dependency tree grammaticalaccording toG iff for every word token
w that appears in the treg, accepts the (possibly empty) sequencevtsf
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left children (from right to left), and-,, accepts the sequence ©fs right
children (from left to right).

3. Astringx € V* is generated by~ with analysisy if y is a grammatical
dependency tree according@and listing the node labels gfin infix order
yields the stringe followed by ROOT; z is called theyield of .

4. The languagé.(G) is the set of all strings generated &Yy

The general parsing algorithm proposed by Eisner for libgrammar is again a
dynamic programming algorithm, which proceeds by linkiipgng(strings where
roots occur either leftmost or rightmost or both) insteadafstituentsthereby
reducing the time complexity fror®(n®) to O(n?®). More precisely, the running
time is O(n3g3t), whereg is an upper bound on the number of possible senses
(lexical entries) of a single word, arids an upper bound on the number of states
of a single automaton.

Eisner shows how the framework of bilexical grammar, anddhbeic-time
parsing algorithm, can be modified to capture a number oéwdfit frameworks
and approaches such as Milward’s (mono)lexical dependgrasymar (Milward,
1994), Alshawi's head automata (Alshawi, 1996), Sleatal @amperley’s link
grammar (Sleator and Temperley, 1991, 1993), and Eisnerisprobabilistic de-
pendency models that will be discussed below in SectionEBshér, 1996b,a).

The second main tradition in grammar-driven dependencsipagis based on
the notion ofeliminative parsing, where sentences are analyzed by successively
eliminating representations that violate constraintd onty valid representations
remain. One of the first parsing systems based on this idéei€G framework
(Karlsson, 1990; Karlsson et al., 1995), which uses un@eiipd dependency
structures represented as syntactic tags and disambiblnate set of constraints
intended to exclude ill-formed analyses. In CDG (Maruyafr890), this idea is
extended to complete dependency structures by genemtizénnotion of tag to
pairs consisting of a syntactic label and an identifier oftbad node. This kind of
representation is fundamental for many different appreadh dependency pars-
ing, since it provides a way to reduce the parsing problemtagging or classi-
fication problem. Typical representatives of this traditere the extended CDG
framework of Harper and Helzerman (1995) and the FDG systapanainen and
Jarvinen, 1997; @rvinen and Tapanainen, 1998), where the latter is a devenp
of CG that combines eliminative parsing with a non-projeetiependency gram-
mar inspired by Tesere (1959).

In the eliminative approach, parsing is viewed as a comdtsaitisfaction prob-
lem, where any analysis satisfying all the constraints efgrammar is a valid
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analysis. Constraint satisfaction in general is NP coreplehich means that spe-
cial care must be taken to ensure reasonable efficiency atipea Early versions
of this approach used procedures based on local consis(bteoylyama, 1990;
Harper et al., 1995), which attain polynomial worst case glexity by only con-
sidering local information in the application of constitainIn the more recently
developed TDG framework (Duchier, 1999, 2003), the probteoonfronted head-
on by using constraint programming to solve the satisfagiimblem defined by
the grammar for a given input string. The TDG framework aidooduces several
levels of representation (cf. Section 2.2), arguing thastmints can be simplified
by isolating different aspects of the grammar such as Imateddominance (ID)
and Linear Precedence (LP) and have constraints that cifegeent levels to each
other (Duchier and Debusmann, 2001; Debusmann, 2001). vidwusis taken to
its logical extension in the most recent version of the fraoné called Extensible
Dependency Grammar (XDG), where any number of levels, oedsions, can be
defined in the grammatical framework (Debusmann et al., 2004

From the point of view of parsing unrestricted text, parsasgonstraint satis-
faction can be problematic in two ways. First, for a givenunptring, there
may be no analysis satisfying all constraints, which leada tobustness prob-
lem. Secondly, there may be more than one analysis, whias leaa problem
of disambiguation. Menzel and S¢éiuer (1998) extends the CDG framework of
Maruyama (1990) witlgraded or weighted constraints, by assigning a weight
(0.0 < w < 1.0) to each constraint indicating how serious the violatiortho$
constraint is (wher@.0 is the most serious). In this extended framework, later
developed into WCDG (Schder, 2002), the best analysis for a given input string
is the analysis that minimizes the total weight of violatedstraints. While early
implementations of this system used an eliminative apgréagarsing (Menzel
and Schader, 1998), the more recent versions instead use a tramstion-based
approach, which successively tries to improve the analygifransforming one
solution into another guided by the observed constrainatiams in the current
solution. One advantage of this heuristic approximatioategy is that it can be
combined with arbitrarily complex constraints, whereandard eliminative pro-
cedures usually require constraints to be binary for effyaeasons (Foth et al.,
2004).

So far, we have distinguished two main trends in grammaredrdependency
parsing. The firstis based on a formalization of dependeramymar that is closely
related to context-free grammar, and therefore usuallyicé=d to projective de-
pendency structures, using standard techniques fromxdeinée parsing to obtain
good efficiency in the presence of massive ambiguity, ini@algr dynamic pro-
gramming or memoization. The second is based on a formigiizat dependency
grammar in terms of constraints, not necessarily limitegrmjective structures,
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where parsing is naturally viewed as a constraint satisfiagiroblem which can
be addressed using eliminative parsing methods, althcwgbxact parsing prob-
lem is often intractable.

In addition to these two traditions, which both involve faitomplex grammars
and parsing algorithms, there is a third tradition whichdsdx on a simpler notion
of dependency grammar together with a deterministic pgrstrategy (possibly
with limited backtracking). As in other parsing paradigrie study of determin-
istic parsing can be motivated either by a wish to model husesence processing
or by a desire to make syntactic parsing more efficient (osipbsboth). Accord-
ing to Covington (2001), these methods have been known #iecE960’s without
being presented systematically in the literature. The &nmehtal parsing strat-
egy comes in different versions but we will concentrate harahe left-to-right
(or incremental) version, which is formulated in the foliogy way by Covington
(2001):

Accept words one by one starting at the beginning of the sesteand
try linking each word as head or dependent of every previawsiw

This parsing strategy is compatible with many differenigmaar formulations. All
that is required is that a gramm@rdefines a boolean functiofy; that, for any two
wordsw; andws, returnstrue if w; can be the head afi, according toG (and
false) otherwise? Covington (2001) demonstrates how this parsing strategy ca
be used to produce dependency structures satisfying efifeonditions such as
unigueness$single head) angrojectivitysimply by imposing different constraints
on the linking operation. Covington has also shown in presiaork how this
parsing strategy can be adapted to suit languages withffez&le or rigid word
order (Covington, 1990a,b, 1994). The time complexity o¥i@gton’s algorithm

is O(n?) in the deterministic version.

The parsing algorithm proposed by Nivre (2003), which wal discussed in
Section 3.2, can be derived as a special case of Covingtigoathm, although we
will not give this formulation here, and the very first expaents with this algo-
rithm used a simple grammar of the kind presupposed by Ctatingp perform
unlabeled dependency parsing (Nivre, 2003). A similar agph can be found
in Obrebski (2003), although this system is nondetermmastd derives a com-
pact representation of all permissible dependency tredseiriorm of a directed
acyclic graph. Yet another framework that shows affinitiethwhe determinis-
tic grammar-driven approach is that of Kromann (2004),@ltih it is based on a

®In this formulation, the parsing strategy is limited to ureéed dependency graphs. In principle,
it is possible to perform labeled dependency parsing byrmetg a set of permissible dependency
types instead dfrue, but this makes the process nondeterministic in general.
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more sophisticated notion of grammar called DiscontinuGtemmar. Parsing in
this framework is essentially deterministic but subjectdpair mechanisms that
are associated with local cost functions derived from tlzergnar.

Before we close the discussion of grammar-driven deperydparsing, we
should also mention the work of Oflazer (2003), which is aredéd finite-state
approach to dependency parsing similar to the cascadedlgaatsers used for
constituency-based parsing by Abney (1996) and Roche j1@¥Tazer’s system
allows violable constraints for robust parsing and useal otk length to rank
alternative analyses, as proposed by Lin (1996).

3.2 Data-Driven Dependency Parsing

As for natural language parsing in general, the first atteraptiata-driven depen-
dency parsing were also grammar-driven in that they reliea fmrmal dependency
grammar and used corpus data to induce a probabilistic nfodelisambigua-
tion. Thus, Carroll and Charniak (1992) essentially use & ®odel, where
the context-free grammar is restricted to be equivalent ags/Gaifman type
dependency grammar. They report experiments trying todaduch a probabilis-
tic grammar using unsupervised learning on an artificialgated corpus but with
relatively poor results.

A more successful and more influential approach was develbgeEisner
(1996a,b), who defined several probabilistic models foredelency parsing and
evaluated them using supervised learning with data from\Wak Street Journal
section of the Penn Treebank. In later work, Eisner (2008)dwn how these
models can be subsumed under the general notionbiEzical grammar(BG),
which means that parsing can be performed efficiently asidésd in Section 3.1.
Eisner (2000) defines the notion ofweighted bilexical grammaiWBG) in terms
of BG as follows (cf. Section 3.1):

1. Aweighted DFAA is a deterministic finite automaton that associates a real-

valuedweightwith each arc and each final state. Each accepting path throug
Ais assigned a weight, namely the sum of all arc weights onatiegnd the
weight of the final state. Each stringaccepted b is assigned the weight
of its accepting path.

2. AWBG G is a BG in which all the automafg, andr,, are weighted DFAs.
The weight of a dependency trgeunder( is defined as the sum, over all
word tokensw in y, of the weight with which,,, acceptsw’'s sequence of
left children plus the weight with which,, acceptsw’s sequence of right
children.
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Eisner (1996b) presents three different probabilistic et®dor dependency pars-
ing, which can be reconstructed as different weighting sesewithin the frame-
work of WBG. However, the first two models (models A and B) riegthat we dis-
tinguish between an underlying stringe V*, described by the WBG, and a sur-
face stringz’, which results from a possibly nondeterministic, possibbighted
finite-state transductio® on z. The surface string’ is then grammatical with
analysis(y, p) if y is a grammatical dependency tree whose yield transduced
to 2/ along an accepting pathin R. To avoid the distinction between underlying
strings and surface strings, we will restrict our attentioomodel C, which was
found to perform significantly better than the other two msdle the experiments
reported in Eisner (1996a).

First of all, it should be pointed out that all the models isrtgr (1996b) in-
volve part-of-speech tags, in addition to word tokens amiafaeled) dependency
relations, and define the joint probability of the words stagd dependency links.
Model C is defined as follows:

n

P(tw(1),...,tw(n), links) = HP(lc(i) [ tw (7)) P(re(i) | tw(i)) (5)
i=1
wheretw(4) is theith tagged word, ané:(i) andrc(i) are the left and right chil-
dren of theith word, respectively. The probability of generating ealsifidcis con-
ditioned on the tagged head word and the tag of the precediid(teft children
being generated from right to left):

m

P(le(i) [ tw(i)) = [[P(tw(lc; (i) | t(lej-1(3)), tw (D)) (6)
j=1

P(re(i) [tw(i) = []P(tw(re; (i) | t(rej-1 (i), tw(i)) ()
j=1

wherelc; (i) is the jth left child of theith word andt(ic;_1(¢)) is the tag of the
preceding left child (and analogousty;(i) andt(rc;—1(i)) for right children).
This model can be implemented in the WBG framework by lettimgy automata
l, andr, have weights on their arcs corresponding to the log of th&albi-
ity of generating a particular left or right child given thagt of the preceding
child. In this way, the weight assigned to a dependency Tre®ill be the log
of P(tw(1),...,tw(n), links) as defined above (Eisner, 2000).

Eisner's work on data-driven dependency parsing has bdkminial in two
ways. First, it showed that generative probabilistic modeadnd supervised learn-
ing could be applied to dependency representations to\achiparsing accuracy
comparable to the best results reported for constitueasgd parsing at the time,
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although the evalutation metrics used in the two cases drgtictly comparable.
Secondly, it showed how these models could be coupled withieaft parsing tech-
niques that exploit the special properties of dependemuagtsires. The importance
of the second aspect can be seen in recent work by McDonald(2085), apply-
ing discriminative estimation methods to probabilistipdadency parsing. Thanks
to the more efficient parsing methods offered by Eisner'shiwds for bilexical
parsing, training can be performed without pruning thed®apace, which is im-
possible for efficiency reasons when using lexicalized ttugncy representations
with comparable lexical dependencies.

Collins et al. (1999) apply the generative probabilisticsrag models of Collins
(1997, 1999) to dependency parsing, using data from thaiefagpendency Tree-
bank. This requires preprocessing to transform dependsinagtures into flat
phrase structures for the training phase and postprogesiextract dependency
structures from the phrase structures produced by thempdrse parser of Char-
niak (2000) has been adapted and applied to the Prague Depmntreebank in a
similar fashion, although this work remains unpublished.

Samuelsson (2000) proposes a probabilistic model for dbgrery grammar
that goes beyond the models considered so far by incorpgrébeled depen-
dencies and allowing non-projective dependency strusturethis model, depen-
dency representations are generated by two stochastiegges: one top-down
process generating the tree structyrand one bottom-up process generating the
surface string: given the tree structure, defining the joint probability(s:, y) =
P(y)P(x]y). Samuelsson suggests that the model can be implementegl aisin
bottom-up dynamic programming approach, but the model htstunately never
been implemented and evaluated.

Another probabilistic approach to dependency parsingicatporates labeled
dependencies is the stochastic CDG parser of Wang and H2@®#), which ex-
tends the CDG model with a generative probabilistic modatsihg is performed
in two steps, which may be tightly or loosely integrated, vehthe first step as-
signs to each word a set of SuperARVs, representing contgrain possible heads
and dependents, and where the second step determines @epealdency links
given the SuperARV assignment. Although the basic modepamnsing algorithm
is limited to projective structures, the system allows poojective structures for
certainwh-constructions. The system has been evaluated on data frewall
Street Journal section of the Penn Treebank and achieviesodtthe-art perfor-
mance using a dependency-based evaluation metric (Wanigamper, 2004).

The first step in the parsing model of Wang and Harper (2004 pesseen as a
kind of supertagging, which has turned out to be a cruciahelg in many recent
approaches to statistical parsing, e.g. in LTAG (Joshi amdka, 2003; Banga-
lore, 2003) and CCG (Clark and Curran, 2004; Curran and C2884). A similar
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two-step process is used in the statistical dependencgipai8angalore (2003),
which uses elementary LTAG trees as supertags in order teed@rdependency
structure in the second step. Supertagging is performetd) wsistandard HMM
trigram tagger, while dependency structures are deriviedy@sheuristic determin-
istic algorithm that runs in linear time. Another data-érivdependency parser
based on supertagging is Nasr and Rambow (2004), wheretagpearre derived
from a lexicalized extended context-free grammar and thst m@bable analysis
is derived using a modified version of the CKY algorithm.

Most of the systems described in this section are based amafdependency
grammar in combination with a generative probabilistic elp@vhich means that
parsing conceptually consists in the derivation of all gees that are permissible
according to the grammar and the selection of the most ptelaalalysis according
to the generative model. This is in contrast to recent wodetan purely discrim-
inative models of inductive learning in combination with ete&'ministic parsing
strategy, methods that do not involve a formal grammar.

The deterministic discriminative approach was first pregbby Kudo and
Matsumoto (2000, 2002) and Yamada and Matsumoto (2003)g ssipport vector
machines (Vapnik, 1995) to train classifiers that predietribxt action of a deter-
ministic parser constructing unlabeled dependency sirest The parsing algo-
rithm used in these systems implements a form of shift-regharsing with three
possible parse actions that apply to two neighboring woedisrred to agarget
nodes!®

1. A Shiftaction adds no dependency construction between the tacgdtw;
andw; 11 but simply moves the point of focus to the right, making ; and
w;12 the new target words.

2. A Rightaction constructs a dependency relation between the tengels,
adding the left nodev; as a child of the right node); ; and reducing the
target words tav; 11, makingw;_1 andw; 1 the new target words.

3. A Left action constructs a dependency relation between the tamyeis,
adding the right nodev;1; as a child of the left node;; and reducing the
target words tav;, makingw;_; andw; the new target words.

The parser processes the input from left to right repeatasilpng as new depen-
dencies are added, which means that up.te 1 passes over the input may be
required to construct a complete dependency tree, givingratwease time com-
plexity of O(n?), although the worst case seldom occurs in practice. Tharest

1%The parsers described in Kudo and Matsumoto (2000, 2002)ppked to Japanese, which is
assumed to be strictly head-final, which means that only ¢hierssShiftandRightare required.
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used to predict the next parse action are the word forms amafrapeech tags of
the target words, of their left and right children, and ofitheft and right string
context (in the reduced string). Yamada and Matsumoto (P&@duate the system
using the standard data set from the Wall Street Journdbseat the Penn Tree-
bank and shows that deterministic discriminative depecglearsing can achieve
an accuracy that is close to the state-of-the-art with dtp@lependency accuracy.
Further improvements with this model are reported in Isoeakl. (2004).

The framework of inductive dependency parsing, first preseim Nivre et al.
(2004) and more fully described in Nivre (2005), has manyprtoes in common
with the system of Yamada and Matsumoto (2003), but theréhaee differences.
The first and most important difference is that the system iafeNet al. (2004)
constructs labeled dependency representations, i.eesepations where depen-
dency arcs are labeled with dependency types. This alsosithahdependency
type information can be exploited in the feature model usegdredict the next
parse action. The second difference is that the algoritropgsed in Nivre (2003)
is a head-driven arc-eager algorithm that constructs a lmegependency tree in
a single pass over the data. The third and final differendesisNivre et al. (2004)
use memory-based learning to induce classifiers for piedi¢the next parsing
action based on conditional features, whereas Yamada atsliMato (2003) use
support vector machines. However, as pointed out by Kuddvsatdumoto (2002),
in a deterministic discriminative parser the learning rodtls largely independent
of the rest of the system.

4 The Case for Dependency Parsing

As noted several times already, dependency-based syntaptiesentations have
played a fairly marginal role in the history of linguisticetbry as well as that of
natural language processing. Saying that there is incrgasierest in dependency-
based approaches to syntactic parsing may therefore netygsvery much, but
it is hard to deny that the notion of dependency has become prominent in the
literature on syntactic parsing during the last decade or so

In conclusion, it therefore seems appropriate to ask wieethar potential bene-
fits of using dependency-based representations in syofaatsing, as opposed to
the more traditional representations based on constijuéerording to Coving-
ton (2001), dependency parsing offers thpeiena facieadvantages:

e Dependency links are close to the semantic relationshipdatefor the next
stage of interpretation; it is not necessary to “read offadvenodifier or
head-complement relations from a tree that does not shaw directly.
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e The dependency tree contains one node per word. Becausardes’p job is
only to connect existing nodes, not to postulate new onegask of parsing
is in some sense more straightforward. [...]

e Dependency parsing lends itself to word-at-a-time opemnati.e., parsing
by accepting and attaching words one at a time rather thandityng for
complete phrases. [...]

To this it is sometimes added that dependency-based pabovgs a more ade-
guate treatment of languages with variable word order, e/décontinuous syn-
tactic constructions are more common than in languagesHiiglish (MelCuk,
1988; Covington, 1990b). However, this argument is onlygpiale if the formal
framework allows non-projective dependency structurdschvis not the case for
most dependency parsers that exist today.

For us, the first two advantages identified by Covington seebetthe most
important. Having a more constrained representation, avtier number of nodes
is fixed by the input string itself, should enable concepyusimpler and compu-
tationally more efficient methods for parsing. At the sanmeeti it is clear that
a more constrained representation is a less expressivesergation and that de-
pendency representations are necessarily underspeciftedaapect to certain as-
pects of syntactic structure. For example, as pointed ouvlblyCuk (1988), it
is impossible to distinguish in a pure dependency repratientbetween an ele-
ment modifying the head of a phrase and the same elementymagdihe entire
phrase. However, this is precisely the kind of ambiguityt thaotoriously hard to
disambiguate correctly in syntactic parsing anyway, sagimbe argued that this
kind of underspecification is actually beneficial. And asg@s the syntactic rep-
resentation encodes enough of the structural relationgathaelevant for semantic
interpretation, then we are only happy if we can constragnpitoblem of deriving
these representations.

In general, there is a tradeoff between the expressivityofagtic represen-
tations and the complexity of syntactic parsing, and weeelithat dependency
representations provide a good compromise in this resjidsety are less expres-
sive than most constituency-based representations, bytabmpensate for this
by providing a relatively direct encoding of predicatetargent structure, which is
relevant for semantic interpretation, and by being compasdilexical relations,
which are beneficial for disambiguation. In this way, deparay structures are
sufficiently expressive to be useful in natural language@ssing systems and at
the same time sufficiently restricted to allow full parsinghahigh accuracy and
efficiency. At least, this seems like a reasonable workirgpkiyesis.

24



References

Abney, S. (1996). Partial parsing via finite-state cascadisirnal of Natural
Language Engineering: 337-344.

Alshawi, H. (1996). Head automata and bilingual tiling: iskation with minimal
representationg?roceedings of the 34th Annual Meeting of the Association fo
Computational Linguistics (AClLpp. 167-176.

Bangalore, S. (2003). Localizing dependencies and sigggrtg. In Bod, R., Scha,
R. and Sima’an, K. (edsData-Oriented ParsingCSLI Publications, University
of Chicago Press, pp. 283—-298.

Bar-Hillel, Y., Gaifman, C. and Shamir, E. (1960). On catégloand phrase-
structure grammard®ulletin of the Research Council of Isre@fF: 1-16.

Barbero, C., Lesmo, L., Lombardo, V. and Merlo, P. (1998)edmation of syn-
tactic and lexical information in a hierarchical dependegcammar. In Ka-
hane, S. and Polgue, A. (eds)Proceedings of the Workshop on Processing of
Dependency-Based Grammars (ACL-COLING). 58-67.

Bloomfield, L. (1933).Language The University of Chicago Press.

Carroll, G. and Charniak, E. (1992). Two experiments onreay probabilistic
dependency grammars from corpofi@chnical Report TR-9Department of
Computer Science, Brown University.

Carroll, J. (2000). Statistical parsing. In Dale, R., Mpi| and Somers, H. (eds),
Handbook of Natural Language ProcessiMprcel Dekker, pp. 525-543.

Charniak, E. (2000). A maximum-entropy-inspired parBeoceedings of the First
Meeting of the North American Chapter of the AssociationGomputational
Linguistics (NAACL)pp. 132-139.

Chomsky, N. (1970). Remarks on nominalization. In Jacobsrd Rosenbaum,
P. S. (eds)Readings in English Transformational Gramm&inn and Co.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ using OG@&ag-linear
models. Proceedings of the 42nd Annual Meeting of the AssociatioCtn-
putational Linguistics (ACL)pp. 104—-111.

Collins, M. (1997). Three generative, lexicalised models dtatistical parsing.
Proceedings of the 35th Annual Meeting of the AssociatioiCtimputational
Linguistics (ACL) pp. 16-23.

25



Collins, M. (1999) Head-Driven Statistical Models for Natural Language Patgi
PhD thesis, University of Pennsylvania.

Collins, M., Haji, J., Brill, E., Ramshaw, L. and Tillmann, C. (1999). A <ati
tical parser for CzechProceedings of the 37th Meeting of the Association for
Computational Linguistics (ACl.pp. 505-512.

Covington, M. A. (1984).Syntactic Theory in the High Middle AgeSambridge
University Press.

Covington, M. A. (1990a). A dependency parser for variakted-order lan-
guagesTechnical Report Al-1990-QUniversity of Georgia.

Covington, M. A. (1990b). Parsing discontinuous constitsein dependency
grammar.Computational Linguistic6; 234—236.

Covington, M. A. (1994). Discontinuous dependency parsihfree and fixed
word order: Work in progres3gechnical Report Al-1994-Q®Jniversity of Geor-

gia.

Covington, M. A. (2001). A fundamental algorithm for dependy parsingPro-
ceedings of the 39th Annual ACM Southeast Confergmred5-102.

Curran, J. R. and Clark, S. (2004). The importance of sugeitig for wide-
coverage CCG parsingProceedings of the 20th International Conference on
Computational Linguistics (COLINGjpp. 282—-288.

Debusmann, R. (2001)A declarative grammar formalism for dependency gram-
mar, Master’s thesis, Computational Linguistics, Univeitsdes Saarlandes.

Debusmann, R., Duchier, D. and Kruijff, G.-J. M. (2004). &xtible dependency
grammar: A new methodologyProceedings of the Workshop on Recent Ad-
vances in Dependency Grammpp. 78-85.

Dowty, D. (1989). On the semantic content of the notion oéfttatic role’. In
Chierchia, G., Partee, B. H. and Turner, R. (eBsdperties, Types and Meaning.
Volume II: Semantic IssugReider, pp. 69-130.

Duchier, D. (1999). Axiomatizing dependency parsing usagconstraintsPro-
ceedings of the Sixth Meeting on Mathematics of Langyagel 15-126.

Duchier, D. (2003). Configuration of labeled trees undeicldized constraints
and principlesResearch on Language and Computatlo807-336.

26



Duchier, D. and Debusmann, R. (2001). Topological deperyddrees: A
constraint-based account of linear precederreceedings of the 39th Annual
Meeting of the Association for Computational Linguisti8€(), pp. 180-187.

Earley, J. (1970). En efficient context-free parsing alfponi Communications of
the ACM13: 94-102.

Eisner, J. M. (1996a). An empirical comparison of prob&pithodels for depen-
dency grammaiTechnical Report IRCS-96-1nstitute for Research in Cogni-
tive Science, University of Pennsylvania.

Eisner, J. M. (1996b). Three new probabilistic models fgpedalency parsing:
An exploration.Proceedings of the 16th International Conference on Comput
tional Linguistics (COLING)pp. 340—-345.

Eisner, J. M. (2000). Bilexical grammars and their cubmeiparsing algorithms.
In Bunt, H. and Nijholt, A. (eds)Advances in Probabilistic and Other Parsing
TechnologiesKluwer, pp. 29-62.

Fillmore, C. J. (1968). The case for case. In Bach, E. W. amindaR. T. (eds),
Universals in Linguistic TheonHolt, Rinehart and Winston, pp. 1-88.

Foth, K., Daum, M. and Menzel, W. (2004). A broad-coverags@afor German
based on defeasible constrain®soceedings of KONVENS 2002p. 45-52.

Gaifman, H. (1965). Dependency systems and phrase-stesyatemsinforma-
tion and Control8: 304-337.

Grimaldi, R. P. (2004). Discrete and Combinatorial Mathematics5th edn,
Addison-Wesley.

Harper, M. P. and Helzerman, R. A. (1995). Extensions to traim depen-
dency parsing for spoken language processBmnputer Speech and Language
9: 187-234.

Harper, M. P., Helzermann, R. A., Zoltowski, C. B., Yeo, B, Chan, Y., Steward,
T. and Pellom, B. L. (1995). Implementation issues in thesttgsment of the
PARSEC parseiSoftware: Practice and Experien@s: 831-862.

Hays, D. G. (1964). Dependency theory: A formalism and sobmervations.
Languaged40: 511-525.

Hellwig, P. (1980). PLAIN — a program system for dependentgiysis and for
simulating natural language inference. In Bolc, L. (e®Rgpresentation and
Processing of Natural LanguagElanser, pp. 195-198.

27



Hellwig, P. (1986). Dependency unification grammddroceedings of the 11th
International Conference on Computational LinguisticSOIING), pp. 195—
198.

Hellwig, P. (2003). Dependency unification grammar. In A§klEichinger, L. M.,
Eroms, H.-W., Hellwig, P., Heringer, H. J. and Lobin, H. (ed@ependency and
Valency Walter de Gruyter, pp. 593—635.

Holan, T., Kuba, V. and Phtek, M. (1997). A prototype of a grammar checker for
Czech Fifth Conference on Applied Natural Language Processipg 147-154.

Hudson, R. A. (1984)Word Grammar Blackwell.
Hudson, R. A. (1990)English Word GrammarBlackwell.

Isozaki, H., Kazawa, H. and Hirao, T. (2004). A determimistiord dependency
analyzer enhanced with preference learnigoceedings of the 20th Interna-
tional Conference on Computational Linguistics (COLIN@). 275-281.

Jackendoff, R. (1972).Semantic Interpretation in Generative GrammaMIT
Press.

Jackendoff, R. S. (1977)X Syntax: A Study of Phrase StructuMIT Press.

Jarvinen, T. and Tapanainen, P. (1998). Towards an implexbé&ntependency
grammar. In Kahane, S. and Polga, A. (eds)Proceedings of the Workshop
on Processing of Dependency-Based Grampaps1-10.

Joshi, A. and Sarkar, A. (2003). Tree adjoining grammarstheil application to
statistical parsing. In Bod, R., Scha, R. and Sima’an, Ks)ddata-Oriented
Parsing CSLI Publications, University of Chicago Press, pp. 2582

Kahane, S., Nasr, A. and Rambow, O. (1998). Pseudo-praigyctiA polyno-
mially parsable non-projective dependency gramnimoceedings of the 36th
Annual Meeting of the Association for Computational Lirsgies and the 17th
International Conference on Computational Linguistigp. 646—652.

Karlsson, F. (1990). Constraint grammar as a framework&osipg running text.
In Karlgren, H. (ed.)Papers presented to the 13th International Conference on
Computational Linguistics (COLINGpp. 168-173.

Karlsson, F., Voutilainen, A., Heikldl, J. and Anttila, A. (eds) (1995 onstraint
Grammar: A language-independent system for parsing uricgsd text Mou-
ton de Gruyter.

28



Kasami, T. (1965). An efficient recognition and syntax aiion for context-free
languagesTechnical Report AF-CRL-65-758.ir Force Cambridge Research
Laboratory.

Kromann, M. T. (2004). Optimality parsing and local costdtions in Discontin-
uous GrammairkElectronic Notes of Theoretical Computer Scie68e163—-179.

Kruijff, G.-J. M. (2001). A Categorial-Modal Logical Architecture of Informa-
tivity: Dependency Grammar Logic and Information StrueturPhD thesis,
Charles University.

Kruijff, G.-J. M. (2002). Formal and computational aspestslependency gram-
mar: History and development of DGechnical report ESSLLI-2002.

Kudo, T. and Matsumoto, Y. (2000). Japanese dependenaiwtelanalysis based
on support vector machinef®roceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Veasyge Corpora
(EMNLP/VLC) pp. 18-25.

Kudo, T. and Matsumoto, Y. (2002). Japanese dependencysisaising cas-
caded chunking.Proceedings of the Sixth Workshop on Computational Lan-
guage Learning (CoNLL.pp. 63—-69.

Lecerf, Y. (1960). Programme des conflits, teldes conflitsBulletin bimestriel
de 'ATALAL(4): 11-18, 1(5): 17-36

Lin, D. (1996). On the structural complexity of natural lalage sentencefro-
ceedings of the 16th International Conference on Compurtati Linguistics
(COLING), pp. 729-733.

Lombardo, V. and Lesmo, L. (1996). An Earley-type recognfae Dependency
Grammar.Proceedings of the 16th International Conference on Coatpnal
Linguistics (COLING) pp. 723-728.

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. (1993uilding a large
annotated corpus of English: The Penn Treeba@kmputational Linguistics
19: 313-330.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., Maclmg; R., Bies, A., Fer-
guson, M., Katz, K. and Schasberger, B. (1994). The Penrb@irde Annotat-
ing predicate-argument structur@roceedings of the ARPA Human Language
Technology Workshopp. 114-119.

29



Marcus, S. (1965). Sur la notion de projec#vitZeitschrift fir mathematische
Logik und Grundlagen der Mathematiid: 181-192.

Maruyama, H. (1990). Structural disambiguation with coaist propagationPro-
ceedings of the 28th Meeting of the Association for Comfurtat Linguistics
(ACL), Pittsburgh, PA, pp. 31-38.

McDonald, R., Crammer, K. and Pereira, F. (2005). Onlingdamargin training of
dependency parserBroceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (AClLpp. 91-98.

Mel’Cuk, 1. (1988).Dependency Syntax: Theory and Practi€&ate University of
New York Press.

Menzel, W. and Sclider, 1. (1998). Decision procedures for dependency parsin
using graded constraints. In Kahane, S. and RolguA. (eds)Proceedings of
the Workshop on Processing of Dependency-Based Gramparg8—87.

Milward, D. (1994). Dynamic dependency grammhmguistics and Philosophy
17: 561-605.

Misra, V. N. (1966).The Descriptive Technique of Panimflouton.

Nasr, A. and Rambow, O. (2004). A simple string-rewritingtalism for depen-
dency grammar.Proceedings of the Workshop on Recent Advances in Depen-
dency Grammarpp. 25-32.

Nikula, H. (1986).Dependensgrammatik.iber.

Nivre, J. (2003). An efficient algorithm for projective deypkency parsing. In
Van Noord, G. (ed.)Proceedings of the 8th International Workshop on Parsing
Technologies (IWPTpp. 149-160.

Nivre, J. (2005).Inductive Dependency Parsing of Natural Language .T&iD
thesis, \axjo University.

Nivre, J., Hall, J. and Nilsson, J. (2004). Memory-baseded€ency parsing. In
Ng, H. T. and Riloff, E. (eds)Proceedings of the 8th Conference on Computa-
tional Natural Language Learning (CoNLLpp. 49-56.

Obrebski, T. (2003). Dependency parsing using dependaaphgIn Van Noord,
G. (ed.),Proceedings of the 8th International Workshop on Parsirahfielogies
(IWPT), pp. 217-218.

30



Oflazer, K. (2003). Dependency parsing with an extendecefistiaite approach.
Computational Linguistic29: 515-544.

Robins, R. H. (1967)A Short History of LinguisticsLongman.

Robinson, J. J. (1970). Dependency structures and tramafamal rules.Lan-
guage46; 259-285.

Roche, E. (1997). Parsing with finite state transducers.olchR, E. and Schabes,
Y. (eds),Finite-State Language ProcessingIT Press, pp. 241-281.

Samuelsson, C. (2000). A statistical theory of dependeyiag. Proceedings of
the 18th International Conference on Computational Listjos (COLING)

Schibder, 1. (2002). Natural Language Parsing with Graded ConstraintBhD
thesis, Hamburg University.

Sgall, P., Hagova, E. and Panevay J. (1986) The Meaning of the Sentence in Its
Pragmatic AspectsReidel.

Sleator, D. and Temperley, D. (1991). Parsing English wiihlagrammar,Tech-
nical Report CMU-CS-91-19&arnegie Mellon University, Computer Science.

Sleator, D. and Temperley, D. (1993). Parsing English withkagrammar.Third
International Workshop on Parsing Technologies (IWRp). 277—292.

Starosta, S. (1988)The Case for Lexicase: An Outline of Lexicase Grammatical
Theory Pinter Publishers.

Tapanainen, P. andadvinen, T. (1997). A non-projective dependency parser.
Proceedings of the 5th Conference on Applied Natural Laggu@rocessing
pp. 64-71.

Tesngre, L. (1959) Elements de syntaxe structuraeditions Klincksieck.
Vapnik, V. N. (1995).The Nature of Statistical Learning Theorgpringer.

Wang, W. and Harper, M. P. (2004). A statistical constraggehdency grammar
(CDG) parser. In Keller, F., Clark, S., Crocker, M. and Stead, M. (eds),
Proceedings of the Workshop in Incremental Parsing: Briggtngineering and
Cognition Together (ACL.pp. 42—-29.

Yamada, H. and Matsumoto, Y. (2003). Statistical depenganalysis with sup-
port vector machines. In Van Noord, G. (ed?yoceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWP3p. 195-206.

31



Yli-dyra, A. (2003). Multiplanarity — a model for dependency stoues in tree-
banks. In Nivre, J. and Hinrichs, E. (edByoceedings of the Second Workshop
on Treebanks and Linguistic Theories (TLVAaXjo University Press, pp. 189—
200.

Younger, D. H. (1967). Recognition and parsing of contegeflanguages in time
n3. Information and ControlL0: 189-208.

Zwicky, A. M. (1985). HeadsJournal of Linguistic®1: 1-29.

32



Natural Language Engineering 13 (2): 95-135. (© 2007 Cambridge University Press 95
doi:10.1017/S1351324906004505  First published online 12 January 2007 Printed in the United Kingdom

MaltParser: A language-independent system
for data-driven dependency parsing

JOAKIM NIVRE

Viixjo University, School of Mathematics and Systems Engineering, 35195 Vixjo, Sweden
Uppsala University, Department of Linguistics and Philology, Box 635, 75126 Uppsala, Sweden
e-mail: joakim.nivre@msi.vxu.se

JOHAN HALL,JENS NILSSON

Viixjo University, School of Mathematics and Systems Engineering, 35195 Viixjo, Sweden
e-mail: {johan.hall, jens.nilsson}@msi.vxu.se

ATANAS CHANEYV

University of Trento, Dept. of Cognitive Sciences, 38068 Rovereto, Italy
ITC-irst, 38055 Povo-Trento, Italy
e-mail: chanev@form.unitn.it

GULSEN ERYIGIT
Istanbul Technical University, Dept. of Computer Engineering, 34469 Istanbul, Turkey
e-mail: gulsen.cebiroglu@itu.edu.tr

SANDRA KUBLER

University of Tiibingen, Seminar fiir Sprachwissenschaft, Wilhelmstr. 19, 72074 Tiibingen, Germany
e-mail: kuebler@sfs.uni-tuebingen.de

SVETOSLAV MARINOV

University of Skovde, School of Humanities and Informatics, Box 408, 54128 Skévde, Sweden
Goteborg University & GSLT, Faculty of Arts, Box 200, 40530 Gdéteborg, Sweden
e-mail: svetoslav.marinov@his.se

ERWIN MARSI

Tilburg University, Communication and Cognition, Box 90153, 5000 LE Tilburg, The Netherlands
e-mail: e.c.marsi@uvt.nl

(Received 16 February 2006; revised 15 August 2006)

Abstract

Parsing unrestricted text is useful for many language technology applications but requires
parsing methods that are both robust and efficient. MaltParser is a language-independent sys-
tem for data-driven dependency parsing that can be used to induce a parser for a new language
from a treebank sample in a simple yet flexible manner. Experimental evaluation confirms that
MaltParser can achieve robust, efficient and accurate parsing for a wide range of languages
without language-specific enhancements and with rather limited amounts of training data.

1 Introduction

One of the potential advantages of data-driven approaches to natural language
processing is that they can be ported to new languages, provided that the necessary
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linguistic data resources are available. In practice, this advantage can be hard to
realize if models are overfitted to a particular language or linguistic annotation
scheme. Thus, several studies have reported a substantial increase in error rate
when applying state-of-the-art statistical parsers developed for English to other
languages, such as Czech (Collins et al. 1999), Chinese (Bikel and Chiang 2000;
Levy and Manning 2003), German (Dubey and Keller 2003), and Italian (Corazza
et al. 2004). Another potential obstacle to successful reuse is that data-driven models
may require large amounts of annotated training data to give good performance,
while for most languages the availability of such resources is relatively limited. This
is also a problem when porting parsers to new domains, even for languages where
large amounts of annotated data are available (Titov and Henderson 2006). Given
that approaches based on completely unsupervised learning are still vastly inferior
in terms of accuracy, there is consequently a need for supervised approaches that
are resilient against data sparseness.

In this article, we present a data-driven approach to dependency parsing that has
been applied to a range of different languages, consistently giving a dependency
accuracy in the range 80-90%, usually with less than a 5% increase in error rate
compared to state-of-the-art parsers for the language in question. All these results
have been obtained without any language-specific enhancements and in most cases
with fairly modest data resources.

The methodology is based on three essential techniques:

1. Deterministic parsing algorithms for building dependency graphs (Kudo and
Matsumoto 2002; Yamada and Matsumoto 2003; Nivre 2003)

2. History-based feature models for predicting the next parser action (Black et al.
1992; Magerman 1995; Ratnaparkhi 1997; Collins 1999)

3. Discriminative machine learning to map histories to parser actions (Veenstra
and Daelemans 2000; Kudo and Matsumoto 2002; Yamada and Matsumoto
2003; Nivre et al. 2004)

The system uses no grammar but relies completely on inductive learning from
treebank data for the analysis of new sentences and on deterministic parsing for
disambiguation. This combination of methods guarantees that the parser is both
robust, producing a well-formed analysis for every input sentence, and efficient,
deriving this analysis in time that is linear or quadratic in the length of the sentence
(depending on the particular algorithm used).

This methodology has been implemented in the MaltParser system, which can be
applied to a labeled dependency treebank in order to induce a labeled dependency
parser for the language represented by the treebank. MaltParser is freely available
for research and educational purposes' and has been designed primarily as a tool
for research on data-driven dependency parsing, allowing users to flexibly combine
different parsing algorithms, feature models, and learning algorithms. However,
given that the necessary data resources are available, MaltParser can also be used

' URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html.
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for rapid development of robust and efficient dependency parsers, which can be used
in language technology applications that require parsing of unrestricted text.

In this article, we begin by describing the general methodology of deterministic
dependency parsing with history-based feature models and discriminative machine
learning (section 2). We then describe the implemented MaltParser system, focusing
on its functionality with respect to parsing algorithms, feature models, and learning
algorithms (section 3). To support our claims about language-independence and
resilience against data sparseness, we then present an experimental evaluation based
on data from ten different languages, with treebanks of different sizes and with
different annotation schemes (section 4). Finally, we draw some general conclusions
and make some suggestions for future work (section 5).

2 Inductive dependency parsing

Mainstream approaches in statistical parsing are based on nondeterministic parsing
techniques, usually employing some kind of dynamic programming, in combination
with generative probabilistic models that provide an n-best ranking of the set of
candidate analyses derived by the parser. This methodology is exemplified by the
influential parsers of Collins (1997; 1999) and Charniak (2000), among others. The
accuracy of these parsers can be further improved by reranking the analyses output
by the parser, typically using a discriminative model with global features that are
beyond the scope of the underlying generative model (Johnson et al. 1999; Collins
2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and Johnson 2005).

A radically different approach is to perform disambiguation deterministically,
using a greedy parsing algorithm that approximates a globally optimal solution by
making a series of locally optimal choices, guided by a classifier trained on gold
standard derivation sequences derived from a treebank. Although this may seem like
a futile strategy for a complex task like parsing, it has recently been used with some
success especially in dependency-based parsing.®> It was first applied to unlabeled
dependency parsing by Kudo and Matsumoto (2002) (for Japanese) and by Yamada
and Matsumoto (2003) (for English). It was later extended to labeled dependency
parsing by Nivre et al. (2004) (for Swedish) and Nivre and Scholz (2004) (for
English). More recently, it has also been applied with good results to lexicalized
phrase structure parsing by Sagae and Lavie (2005).

One of the advantages of the deterministic, classifier-based approach is that it
is straightforward to implement and has a very attractive time complexity, with
parsing time being linear or at worst quadratic in the size of the input, although the
constant associated with the classifier can sometimes become quite large. Moreover,
while the accuracy of a deterministic parser is normally a bit lower than what can be
attained with a more complex statistical model, trained and tuned on large amounts
of data, the deterministic parser will often have a much steeper learning curve,

2 In fact, essentially the same methodology has been proposed earlier for other frameworks
by Berwick (1985), Simmons and Yu (1992), Zelle and Mooney (1993) and Veenstra and
Daelemans (2000), among others, although these approaches have typically been evaluated
only on artificially generated or very small data sets.
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which means that it may in fact give higher accuracy with small training data sets.
This is a natural consequence of the fact that the deterministic model has a much
smaller parameter space, where only the mode of the distribution for each distinct
history needs to be estimated, whereas a traditional generative model requires a
complete probability distribution. Finally, and for essentially the same reason, the
deterministic model can be less sensitive to differences in linguistic structure and
annotation style across languages and should therefore be more easily portable
without substantial adaptation.

In this study, we investigate these issues by applying the deterministic, classifier-
based approach, as implemented in the MaltParser system for inductive dependency
parsing, to a wide range of languages with varying annotation schemes and with data
sets of varying sizes. By way of background, this section presents the theoretical
foundations of inductive dependency parsing, defining syntactic representations,
parsing algorithms, feature models, and learning algorithms.? In section 3, we then
describe the implemented MaltParser system that has been used for the experiments
reported in section 4.

2.1 Dependency graphs

In dependency parsing, the syntactic analysis of a sentence is represented by a
dependency graph, which we define as a labeled directed graph, the nodes of which
are indices corresponding to the tokens of a sentence. Formally:

Definition 1
Given a set R of dependency types (arc labels), a dependency graph for a sentence
x = (wy,...,wy) is a labeled directed graph G = (V, E, L), where:

1. V:Z,H_l
2. EcCcV xV
3. L:E—>R

Definition 2
A dependency graph G is well-formed if and only if:

1. The node 0 is a root (RooT).
2. G is connected (CONNECTEDNESS).*

The set V of nodes (or vertices) is the set Z,1 = {0,1,2,...,n} (n € Z7), ie., the set
of non-negative integers up to and including n. This means that every token index i
of the sentence is a node (1 < i < n) and that there is a special node 0, which does
not correspond to any token of the sentence and which will always be a root of the
dependency graph (normally the only root).

3 For an in-depth discussion of inductive dependency parsing and its relation to other parsing
methods, see Nivre (2006).

4 Strictly speaking, we require the graph to be weakly connected, which entails that the
corresponding undirected graph is connected, whereas a strongly connected graph has a
directed path between any pair of nodes.
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AuxZ .
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R P VB T C R N4 A
/ nich je jen jedna, na kvalitu
(Out-of them is only one-FEM-SG to quality )

(“Only one of them concerns quality.”)

Fig. 1. Dependency graph for Czech sentence from the Prague Dependency Treebank.

In the following, we will reserve the term token node for a node that corresponds
to a token of the sentence, and we will use the symbol V' to denote the set of
token nodes of a sentence for which the set of nodes is V, ie, VT =V — {0}.
When necessary, we will write ¥, and VI to indicate that ¥ and V't are the nodes
corresponding to a particular sentence x = (wy,...,w,). Note, however, that the only
requirement imposed by x is that the number of nodes matches the length of x, i.e.,
[Vt =nand |V|=n+1.

The set E of arcs (or edges) is a set of ordered pairs (i, j), where i and j are
nodes. Since arcs are used to represent dependency relations, we will say that i is
the head and j is the dependent of the arc (i, j). As usual, we will use the notation
i — j to mean that there is an arc connecting i and j (i.e., (i, j) € E) and we will use
the notation i —* j for the reflexive and transitive closure of the arc relation E (i.e.,
i =" jif and only if i = j or there is a path of arcs connecting i to j).

The function L assigns a dependency type (arc label) r € R to every arc e € E.
We will use the notation i — j to mean that there is an arc labeled r connecting i
to j (ie., (i,j) € E and L((i, j)) = r).

Figure 1 shows a Czech sentence from the Prague Dependency Treebank with
a well-formed dependency graph according to Definition 1-2. Note that the use
of a special root node (0) is crucial for the satisfaction of CONNECTEDNESS, since
the graph would otherwise have consisted of two connected components rooted at
nodes 3 and 8, respectively. The use of a special root node is thus a convenient way
of ensuring CONNECTEDNESS, regardless of whether a particular annotation scheme
requires that a single token node should dominate all the others. More importantly,
it is a way of achieving robustness in parsing, since there will always be a single
entry point into the graph even if the parser produces fragmented output.

The only conditions so far imposed on dependency graphs is that the special node
0 be a root and that the graph be connected. Here are three further constraints that
are common in the literature:

3. Every node has at most one head, i.e., if i — j then there is no node k such
that k # i and k — j (SINGLE-HEAD).
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4. The graph G is acyclic, i.e., if i — j then not j —»" i (ACYCLICITY).
5. The graph G is projective, i.e., if i — j then i —" k, for every node k such that
i<k <jorj<k<i(PROJECTIVITY).

The SINGLE-HEAD constraint, together with the basic well-formedness conditions,
entails that the graph is a tree rooted at the node 0, which means that any well-
formed graph satisfying SINGLE-HEAD also satisfies AcycLiciTy. And whereas it is
possible to require AcycLICITY without SINGLE-HEAD, the two conditions are jointly
assumed in almost all versions of dependency grammar, especially in computational
systems.

By contrast, PROJECTIVITY is much more controversial. Broadly speaking, we
can say that whereas most practical systems for dependency parsing do assume
projectivity, most dependency-based linguistic theories do not. More precisely, most
theoretical formulations of dependency grammar regard projectivity as the norm
but also recognize the need for non-projective representations to capture non-local
dependencies and discontinuities arising from free or flexible word order (Mel’Cuk
1988; Hudson 1990). This theoretical preference for non-projective dependency
graphs is usually carried over into treebank annotation schemes, so that virtually
all treebanks annotated with dependency graphs contain non-projective structures.
This is true, for example, of the Prague Dependency Treebank of Czech (Hajic
et al. 2001), the Danish Dependency Treebank (Kromann 2003), and the Turkish
Treebank (Oflazer et al. 2003), all of which are used in this study.

2.2 Deterministic parsing algorithms

The most commonly used deterministic algorithms for dependency parsing can be
seen as variants of the basic shift-reduce algorithm, analyzing the input from left
to right using two main data structures, a queue of remaining input tokens and
a stack storing partially processed tokens. One example is the arc-eager algorithm
introduced in Nivre (2003), which is used in all the experiments in this article and
which we describe in detail in this section. Like most of the algorithms used for
practical dependency parsing, this algorithm is restricted to projective dependency
graphs. We begin by defining a parser configuration for a sentence x = (wy,..., wy),
relative to a set R of dependency types (including a special symbol ry for dependents
of the root):

Definition 3
Given a set R = {ro,ry,...1r,} of dependency types and a sentence x = (wy,...,w,),
a parser configuration for x is a quadruple ¢ = (0,7, h,d), where:

1. ¢ is a stack of token nodes i (1 <i < j for some j < n).

2. 7 is a sorted sequence of token nodes i (j <i < n).

3. h: V{ — V, is a function from token nodes to nodes.

4. d : Vi — R is a function from token nodes to dependency types.
5. For every token node i € VI, d(i) = r¢ only if h(i) = 0.

The idea is that the sequence t represents the remaining input tokens in a left-to-
right pass over the input sentence x; the stack ¢ contains partially processed nodes
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that are still candidates for dependency arcs, either as heads or dependents; and
the functions h and d represent the (partially constructed) dependency graph for the
input sentence x.

Representing the graph by means of two functions in this way is possible if we
assume the SINGLE-HEAD constraint. Since, for every token node j, there is at most
one arc (i, j), we can represent this arc by letting h(j) = i. Strictly speaking, h should
be a partial function, to allow the possibility that there is no arc (i, j) for a given
node j, but we will avoid this complication by assuming that every node j for
which there is no token node i such that i — j is headed by the special root node
0, i.e., h(j) = 0. Formally, we establish the connection between configurations and
dependency graphs as follows:

Definition 4
A configuration ¢ = (o,1,h,d) for x = (wy,...,w,) defines the dependency graph
G. = (V\,E., L), where:

L. Ec = {(i, ))| h(j) =i}
2. Le = {((i. j),r) | h(j) = i,d(j) =}

We use the following notational conventions for the components of a configuration:

1. Both the stack ¢ and the sequence of input tokens t will be represented as
lists, although the stack ¢ will have its head (or top) to the right for reasons
of perspicuity. Thus, o|i represents a stack with top i and tail ¢, while j|t
represents a list of input tokens with head j and tail 7, and the operator | is
taken to be left-associative for the stack and right-associative for the input
list. We use e to represent the empty list/stack.

2. For the functions h and d, we will use the notation f[x — y], given a specific
function f, to denote the function g such that g(x) = y and g(z) = f(z) for all

z # x. More formally, if f(x) =)/, then f[x+ y] = (f — {(x,)}) U {(x,»)}.
Initial and terminal parser configurations are defined in the following way:

Definition 5
A configuration ¢ for x = (wy,...,w,) is initial if and only if it has the form
c=(e(1,...,n),ho,dy), where:

1. ho(i) =0 for every i € V.
2. do(i) = ro for every i € V.

A configuration ¢ for x = (wy,...,w,) is terminal if and only if it has the form
¢ = (a,€,h,d) (for arbitrary o, h and d).

In other words, we initialize the parser with an empty stack, with all the token
nodes of the sentence remaining to be processed, and with a dependency graph
where all token nodes are dependents of the special root node 0 and all arcs are
labeled with the special label ry, and we terminate whenever the list of input tokens
is empty, which happens when we have completed one left-to-right pass over the
sentence. We use C for the set of all possible configurations (relative to some set
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R of dependency types) and C” for the set of non-terminal configurations, i.e., any
configuration ¢ = (g, 1, h,d) where t # €.

A transition is a partial function t : C" — C. In other words, a transition maps
non-terminal configurations to new configurations but may be undefined for some
non-terminal configurations. The parsing algorithm uses four transitions, two of
which are parameterized by a dependency type r € R.

Definition 6
Given a set of dependency types R, the following transitions are possible for every
r € R:

1. LEFT-ARC(r):
(ali, jlt, h,d) — (o, jlt, hli—> jl.d[i—> r])
if h(i)=0

2. RIGHT-ARC(r):
(ali, jlt, h,d) — (alilj, 7, h[j = il,d[j > r])
if h(j)=0

3. REDUCE:
(ali,t,h,d) — (0,7, h,d)
if h(i) #= 0

4. SHIFT:
(0,i|t,h,d) — (oli,t, h,d)

The transition LEFT-ARC(r) makes the top token i a (left) dependent of the next
token j with dependency type r, i.e., j 5 i, and immediately pops the stack. This
transition can apply only if h(i) = 0, ie., if the top token is previously attached
to the root 0. The node i is popped from the stack because it must be complete
with respect to left and right dependents at this point (given the assumption of
projectivity).

The transition RIGHT-ARC(r) makes the next token j a (right) dependent of the
top token i with dependency type r, i.e., i 5 Jj, and immediately pushes j onto the
stack. This transition can apply only if h(j) = 0, i.e., if the next token is previously
attached to the root 0.° The node j is pushed onto the stack since it must be
complete with respect to its left dependents at this point, but it cannot be popped
because it may still need new dependents to the right.

The transition REDUCE pops the stack. This transition can apply only if h(i) # 0,
i.e., if the top token i is already attached to a token node. This transition is needed
for popping a node that was pushed in a RIGHT-ARC(r) transition and which has
since found all its right dependents.

The transition SHIFT pushes the next token i onto the stack. This transition can
apply unconditionally as long as there are input tokens remaining. It is needed for

3 This condition is in fact superfluous, since it is impossible for the next input token to be
attached to any other node, but it is included for symmetry.
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processing nodes that have their heads to the right, as well as nodes that are to
remain attached to the special root node.

The transition system just defined is nondeterministic in itself, since there is
normally more than one transition applicable to a given configuration. In order
to perform deterministic parsing, the transition system needs to be supplemented
with a mechanism for predicting the next transition at each nondeterministic choice
point, as well as choosing a dependency type r for the transitions LEFT-ARC(r) and
RIGHT-ARC(r). Such a mechanism can be called an oracle (Kay 2000). Assuming that
we have an oracle o : C" — (C" — C), the algorithm for deterministic dependency
parsing is very simple and straightforward:

PARSE(x = (wq,...,w,))

1 ¢« (e6(1,...,n),hydy)

2 while ¢ = (0,71, h,d) is not terminal
3 if o =¢

4 ¢ < SHIFT(¢)

5 else

6 ¢ < [o(0)](c)

7 G «— (VXS EC’ L()

8 return G

As long as the parser remains in a non-terminal configuration, it applies the SHIFT
transition if the stack is empty and otherwise the transition o(c) predicted by the
oracle. When a terminal configuration is reached, the dependency graph defined by
this configuration is returned.

The notion of an oracle is useful for the theoretical analysis of parsing algorithms
and allows us to show, for example, that the parsing algorithm just described derives a
well-formed projective dependency graph for any input sentence in time that is linear
in the length of the input, and that any projective dependency graph can be derived
by the algorithm (Nivre 2006). In practice, the oracle can only be approximated,
but the fundamental idea in inductive dependency parsing is that we can achieve a
good approximation using history-based feature models and discriminative machine
learning, as described in the following subsections.

An alternative to the algorithm described in this section is to use an arc-standard
strategy, more directly corresponding to the strict bottom-up processing in traditional
shift-reduce parsing. In this scheme, the RIGHT-ARC(r) and REDUCE transitions are
merged into a single transition that immediately pops the dependent in the same way
as LEFT-ARC(r), which means that right dependents can only be attached after they
have found all their descendants. This is the strategy used by Kudo and Matsumoto
(2002), Yamada and Matsumoto (2003) and Cheng et al. (2004), although they also
modify the algorithm by allowing multiple passes over the input. There are few
studies comparing the performance of different algorithms, but Cheng et al. (2005)
found consistently better accuracy for the arc-eager, single-pass strategy (over the
arc-standard, multi-pass algorithm) in parsing the CKIP Treebank of Chinese.

A somewhat different approach is to use the incremental algorithms described
by Covington (2001), where the stack is replaced by an open list where any token
can be linked to the next input token. This allows non-projective graphs to be



104 J. Nivre et al.

derived at the cost of making parsing time quadratic in the length of the input.
This is a technique that has not yet been evaluated on a large scale, and attempts
at recovering non-projective dependencies within this tradition have so far relied on
post-processing of projective dependency graphs, e.g., using the pseudo-projective
technique proposed by Nivre and Nilsson (2005).

2.3 History-based feature models

History-based models for natural language processing were first introduced by
Black et al. (1992) and have been used extensively for part-of-speech tagging and
syntactic parsing. The basic idea is to map each pair (x, y) of an input string x and
an analysis y to a sequence of decisions D = (d,...,d,). In a generative probabilistic
model, the joint probability P(x,y) can then be expressed using the chain rule of
probabilities as follows:

(1) P(x,y) = P(dy,....d,) = [ [ P(di| dy.....diy)
i=1

The conditioning context for each d;, (dy,...,d;_1), is referred to as the history and
usually corresponds to some partially built structure. In order to get a tractable
learning problem, histories are grouped into equivalence classes by a function ®:

(2) P(x,y) = P(dy,....d,) = [ [ P(di | D(dy, ... di1))
i=1

Early versions of this scheme were integrated into grammar-driven systems. For
example, Black et al. (1993) used a standard PCFG but could improve parsing per-
formance considerably by using a history-based model for bottom-up construction
of leftmost derivations. In more recent developments, the history-based model has
replaced the grammar completely, as in the parsers of Collins (1997; 1999) and
Charniak (2000).

With a generative probabilistic model, the parameters that need to be estimated
are the conditional probabilities P(d;|®(dy,...,d;_1)), for every possible decision
d; and non-equivalent history H; = ®(dy,...,d;_1). With a deterministic parsing
strategy, we only need to estimate the mode of each conditional distribution, i.e.,
argmaxy, P(d; | ®(dy,...,di—1)). This reduces the parameter estimation problem to
that of learning a classifier, where the classes are the possible decisions of the parser,
e.g., the possible transitions of the algorithm described in the previous section.

Distinct parser histories are normally represented as sequences of attributes, so-
called feature vectors, and the function ®, referred to as the feature model, can
therefore be defined in terms of a sequence @, = (¢1,...,¢,) of feature functions,
where each function ¢; identifies some relevant feature of the history. The most
important features in dependency parsing are the attributes of input tokens, such
as their word form, part-of-speech or dependency type, and we will in fact limit
ourselves in this article to features that can be defined as simple attributes of
tokens.
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Token attributes can be divided into static and dynamic attributes, where static
attributes are properties that remain constant during the parsing of a sentence.
This primarily includes the actual word form of a token, but also any kind of
annotation that is the result of preprocessing, such as part-of-speech tag, lemma,
or word sense annotation. In this article, we restrict our attention to two kinds of
static attributes, word form and part-of-speech. Given a sentence x = (wy,..., wy),
with part-of-speech annotation, we use w(i) and p(i) to refer to the word form and
part-of-speech, respectively, of the ith token. We will also make use of fixed-length
suffixes of word forms and write s, (w(i)) for the m-character suffix of w(i) (where
sm(w(i)) = w(i) if w(i) has length | < m).

Dynamic attributes, by contrast, are attributes that are defined by the partially
built dependency graph, which in this article will be limited to the dependency type
by which a token is related to its head, given by the function d of the current parser
configuration ¢ = (0,1, h,d).

To define complex history-based feature models, we need to refer to attributes of
arbitrary tokens in the parser history, represented by the current parser configuration.
For this purpose, we introduce a set of address functions.

Definition 7
Given a sentence x = (wy,...,w,) and a parser configuration ¢ = (o, 1, h,d) for x:

o; is the ith token from the top of the stack (starting at index 0).
7; is the ith token in the remaining input (starting at index 0).
h(i) is the head of token i in the graph defined by h.

[(i) is the leftmost child of token i in the graph defined by h.

r(i) is the rightmost child of token i in the graph defined by h.

NANEE ol A

By combining these functions, we can define arbitrarily complex functions that
identify tokens relative to a given parser configuration c. For example, while gy
is the token on top of the stack, h(og) is the head of the token on top of the
stack, and [(h(ap)) is the leftmost dependent of the head of the token on top of
the stack. It should be noted that these functions are generally partial functions on
token nodes, which means that if one of the inner functions in a chain of applica-
tions returns O (because h(i) = 0) or is undefined (because the stack is empty, or a
token does not have a leftmost child, etc.), then the outermost function is always
undefined.

Finally, we can now define feature functions by applying attribute functions
to complex combinations of address functions. For example, p(tg) is the part-of-
speech of the next input token, while d(h(gy)) is the dependency type of the head
of the token on top of the stack, which may or may not be defined in a given
configuration. Any feature function that is undefined for a given configuration,
because the complex address function fails to identify a token, is assigned a special
nil value. Feature models used for inductive dependency parsing typically combine
static part-of-speech features and lexical features (or suffix features) with dynamic
dependency type features. The kind of models used in the experiments later on are
described in section 3.2 below.
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2.4 Discriminative machine learning

Given a function approximation problem with labeled training data from target
function f : X — Y, discriminative learning methods attempt to optimize the
mapping from inputs x € X to outputs y € Y directly, without estimating a full
generative model of the joint distribution of X and Y. Discriminatively trained
models have in recent years been shown to outperform generative models for
many problems in natural language processing, including syntactic parsing, by
directly estimating a conditional probability distribution P(Y |X) (Johnson et al.
1999; Collins 2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and
Johnson 2005). With a deterministic parsing strategy, the learning problem can
be further reduced to a pure classification problem, where the input instances are
histories (represented by feature vectors) and the output classes are parsing decisions.

Thus, the training data for the learner consists of pairs (®(c),t), where ®(c) is
the representation of a parser configuration defined by the feature model ®(c) and
t is the correct transition out of ¢. Such data can be generated from a treebank of
gold standard dependency graphs, by reconstructing the correct transition sequence
for each dependency graph in the treebank and extracting the appropriate feature
vectors for each configuration, as described in detail by Nivre (2006) for the parsing
algorithm discussed in section 2.2.

Although in principle any learning algorithm capable of inducing a classifier from
labeled training data can be used to solve the learning problem posed by inductive
dependency parsing, most of the work done in this area has been based on support
vector machines (SVM) and memory-based learning (MBL).®

SVM is a hyperplane classifier that relies on the maximum margin strategy
introduced by Vapnik (1995). Furthermore, it allows the use of kernel functions to
map the original feature space to a higher-dimensional space, where the classification
problem may be (more) linearly separable. In dependency parsing, SVM has been
used primarily by Matsumoto and colleagues (Kudo and Matsumoto 2002; Yamada
and Matsumoto 2003; Cheng et al. 2004; Cheng et al. 2005).

MBL is a lazy learning method, based on the idea that learning is the simple
storage of experiences in memory and that solving a new problem is achieved by
reusing solutions from similar previously solved problems (Daelemans and Van den
Bosch 2005). In essence, this is a k nearest neighbor approach to classification,
although a variety of sophisticated techniques, including different distance metrics
and feature weighting schemes can be used to improve classification accuracy. In
dependency parsing, MBL has been used primarily by Nivre and colleagues (Nivre
et al. 2004; Nivre and Scholz 2004; Nivre and Nilsson 2005), and it is also the
learning method that is used for the experiments in this article.

3 MaltParser

MaltParser is an implementation of inductive dependency parsing, as described
in the previous section, where the syntactic analysis of a sentence amounts to

¢ In addition, maximum entropy modeling was used in the comparative evaluation of Cheng
et al. (2005).
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the deterministic derivation of a dependency graph, and where discriminative
machine learning is used to guide the parser at nondeterministic choice points,
based on a history-based feature model. MaltParser can also be characterized as
a data-driven parser-generator. While a traditional parser-generator constructs a
parser given a grammar, a data-driven parser-generator constructs a parser given a
treebank.

The system can be run in two basic modes. In learning mode, it takes as input a
(training) set of sentences with dependency graph annotations, derives training data
by reconstructing the correct transition sequences, and trains a classifier on this data
set according to the specifications of the user. In parsing mode, it takes as input a
(test) set of sentences and a previously trained classifier and parses the sentences
using the classifier as a guide.

3.1 Parsing algorithms
MaltParser provides two main parsing algorithms, each with several options:

e The linear-time algorithm of Nivre (2003) can be run in arc-ecager or arc-
standard mode. The arc-standard version is similar to but not identical to
the algorithm of Yamada and Matsumoto (2003), since the latter also uses
multiple passes over the input (Nivre 2004). In both versions, this algorithm
is limited to projective dependency graphs.

e The incremental algorithm of Covington (2001) can be run in projective or
non-projective mode. In the latter case, graphs are still guaranteed to obey
the constraints ROOT, CONNECTEDNESS, SINGLE-HEAD and ACYCLICITY.

The experiments reported in this article are all based on the arc-eager version of
Nivre’s algorithm.

3.2 Feature models

MaltParser allows the user to define arbitrarily complex feature models, using address
functions and attribute functions as described in section 2.3.7 The standard model
used in most of the experiments reported below combines part-of-speech features,
lexical features and dependency type features in the following way:

p(o1)  w(h(ao))  d(l(0))
p(ao)  w(oo) d(oo)
p(to)  w(t0)) d(r(o0))
p(ti)  w(t) d(I(70))
p(t2)

p(t3)

7 The feature models supported by MaltParser are in fact slightly more general in that
they also allow address functions that refer to siblings. This option is not exploited in
the experiments reported below and has therefore been excluded from the presentation in
section 2.3.
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This model includes six part-of-speech features, defined by the part-of-speech of the
two topmost stack tokens (p(ay), p(c1)) and by the first four tokens of the remaining
input (p(zo), p(t1), p(t2), p(t3)). The dependency type features involve the top token
on the stack (d(gy)), its leftmost and rightmost dependent (d(I(a¢)), d(r(og))), and
the leftmost child of the next input token (d(I(t0))).® Finally, the standard model
includes four lexical features, defined by the word form of the top token on the
stack (w(ayp)), the head of the top token (w(h(ap))), and the next two input tokens
(w(10), w(t1)).

The standard model can be seen as the prototypical feature model used in the
experiments reported below, although the tuned models for some languages deviate
from it by adding or omitting features, or by replacing lexical features by suffix
features (the latter not being used at all in the standard model). Deviations from
the standard model are specified in table 3 below.

3.3 Learning algorithms
MaltParser provides two main learning algorithms, each with a variety of options:

e Memory-based learning (MBL) using TIMBL, a software package for memory-
based learning and classification developed by Daelemans, Van den Bosch and
colleagues at the Universities of Tilburg and Antwerp (Daelemans and Van den
Bosch 2005).

e Support vector machines (SVM) using LIBSVM, a library for SVM learning
and classification developed by Chang and Lin at National Taiwan University
(Chang and Lin 2001).

The experiments reported in this paper are all based on MBL and make crucial use
of the following features of TIMBL:

e Varying the number k of nearest neighbors

e Using the Modified Value Difference Metric (MVDM) for distances between
feature values (for values seen more than [ times)

e Distance-weighted class voting for determining the majority class

The optimal values for these parameters vary for different feature models, languages
and data sets, but typical values are k = 5, MVDM down to [ = 3 (with the simple
Overlap metric for lower frequencies), and class voting weighted by inverse distance
(ID). For more information about these and other TIMBL features, we refer to
Daelemans and Van den Bosch (2005).

3.4 Auxiliary tools

MaltParser is supported by a suite of freely available tools for, among other things,
parser evaluation and treebank conversion. Of special interest in this context are

8 It is worth pointing out that, given the nature of the arc-eager parsing algorithm, the
dependency type of the next input token and its rightmost child will always be undefined
at decision time (hence their omission in the standard model and all other models).
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the tools for pseudo-projective dependency parsing (Nivre and Nilsson 2005). This
is a method for recovering non-projective dependencies through a combination of
data-driven projective dependency parsing and graph transformation techniques in
the following way:

1. Dependency graphs in the training data sets are transformed (if necessary) to
projective dependency graphs, by minimally moving non-projective arcs up-
wards towards the root and encoding information about these transformations
in arc labels.

2. The projective parser is trained as usual, except that the dependency graphs
in the training set are labeled with the enriched arc labels.

3. New sentences are parsed into projective dependency graphs with enriched arc
labels.

4. Dependency graphs produced by the parser are transformed (if possible) to
non-projective dependency graphs, using an inverse transformation guided by
information in the arc labels.

This methodology has been used in a few of the experiments reported below, in
particular for the parsing of Czech (section 4.2.5).

4 Experimental evaluation

In this section, we summarize experiments with the MaltParser system on data
from ten different languages: Bulgarian, Chinese, Czech, Danish, Dutch, English,
German, Italian, Swedish and Turkish.” Although the group is dominated by Indo-
European languages, in particular Germanic languages, the languages nevertheless
represent fairly different language types, ranging from Chinese and English, with
very reduced morphology and relatively inflexible word order, to languages like
Czech and Turkish, with rich morphology and flexible word order, and with
Bulgarian, Danish, Dutch, German, Italian and Swedish somewhere in the middle.
In addition, the treebank annotation schemes used to analyze these languages differ
considerably. Whereas the treebanks for Czech, Danish, Italian and Turkish are
proper dependency treebanks, albeit couched in different theoretical frameworks,
the annotation schemes for the remaining treebanks are based on constituency
in combination with grammatical functions, which necessitates a conversion from
constituent structures to dependency structures.

Below we first describe the general methodology used to evaluate the system,
in particular the evaluation metrics used to assess parsing accuracy, and give an
overview of the different data sets and experiments performed for different languages
(section 4.1). This is followed by a presentation of the results (section 4.2), with
specific subsections for each language (section 4.2.1-4.2.10), where we also give
a more detailed description of the respective treebanks and the specific settings

? Results have been published previously for Swedish (Nivre et al. 2004; Nivre 2006), English
(Nivre and Scholz 2004; Nivre 2006), Czech (Nivre and Nilsson 2005), Bulgarian (Marinov
and Nivre 2005), Danish (Nivre and Hall 2005) and Italian (Chanev 2005) but not for
Chinese, German and Turkish.
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Table 1. Data sets. AS = Annotation scheme (C = Constituency, D = Dependency,
G = Grammatical functions); Pro = Projective; #D = Number of dependency types;
#P = Number of PoS tags;, TA =Tagging accuracy; #W = Number of words; #S =
Number of sentences; SL = Mean sentence length; EM = Evaluation method (T =
Held-out test set, CVy = k-fold cross-validation)

Language AS Pro #D #P TA #W #S SL EM
Bulgarian C no 14 51 93.5 72k 5.1k 14.1 CVg
Chinese CG yes 12 35 100.0 509k 18.8k 27.1 T
Czech D no 26 28 94.1 1507k 87.9k 17.2 T
Danish D no 54 33 96.3 100k 5.5k 18.2 T
Dutch CD no 23 165 95.7 186k 13.7k 13.6 T
English CG yes 12 48 96.1 1174k 49.2k 23.8 T
German CG no 31 55 100.0 382k 22.1k 17.3 CViy
Italian D no 17 89 93.1 42k 1.5k 27.7 CVyg
Swedish CG yes 17 46 95.6 98k 6.3k 15.5 T
Turkish D no 24 484 100.0 48k 5.6k 8.6 CViy

used for individual experiments, followed by a general discussion, where we bring
together the results from different languages and try to discern some general trends
(section 4.3).

4.1 Method

Table 1 gives an overview of the data sets for the ten languages. The first column
characterizes the annotation scheme and the second indicates whether the (possibly
converted) annotation is restricted to projective dependency graphs. The next two
columns contain the number of distinct dependency types and part-of-speech tags,
respectively, where the latter refers to the tagset actually used in parsing, which may
be a reduced version of the tagset used in the original treebank annotation. The
fifth column gives the mean accuracy of the part-of-speech tagging given as input to
the parser, where 100.0 indicates that experiments have been performed using gold
standard tags (i.e., manually assigned or corrected tags) rather than the output of an
automatic tagger. The next three columns give the number of tokens and sentences,
and the mean number of words per sentence. These figures refer in each case to the
complete treebank, of which at most 90% has been used for training and at least
10% for testing (possibly using k-fold cross-validation).

Table 2 gives a little more information about the syntactic analysis adopted in
the different treebank annotation schemes. Whereas all the schemes agree on basic
structures such as verbs taking their core arguments as dependents and adjuncts
being dependents of the heads they modify, there are a number of constructions
that have competing analyses with respect to their dependency structure. This
holds in particular for constructions involving function words, such as auxiliary
verbs, prepositions, determiners, and complementizers, but also for the ubiquitous
phenomenon of coordination. Table 2 shows the choices made for each of these
cases in the different treebanks, and we see that there is a fair amount of variation
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Table 2. Annotation style (choice of head). VG = Verb group (Aux = Auxiliary
verb, MV = Main verb); AP = Adpositional phrase (Ad = Adposition, N = Nominal
head); NP = Noun phrase (Det = Determiner, N = Noun); SC = Subordinate clause
(Comp = Complementizer, V = Verb); Coord = Coordination (CC = Coordinating
conjunction, Conj, = First conjunct, Conj, = Last conjunct); NA = Not applicable

Language VG AP NP SC Coord
Bulgarian MV Ad N Comp Conj;
Chinese Aux Ad N Comp Conj; /Conj,
Czech MV Ad N v CC

Danish Aux Ad Det Comp Conj,

Dutch Aux Ad N Comp CC

English Aux Ad N Comp Conj; /Conj,
German Aux Ad N v Conj,

Italian MV Ad Det Comp Conj,
Swedish Aux Ad N Comp Conyj;
Turkish NA (Ad) N NA Conj,

especially with respect to verb groups and coordination.!? It is worth noting that for
Turkish, which is a richly inflected, agglutinative language, some of the distinctions
are not applicable, since the relevant construction is encoded morphologically rather
than syntactically.!! It is also important to remember that, for the treebanks that are
not originally annotated with dependency structures, the analysis adopted here only
represents one conversion out of several possible alternatives. More information
about the conversions are given for each language below.

All the experiments reported in this article have been performed with the parsing
algorithm described in Nivre (2003; 2004; 2006) and with memory-based learning
and classification as implemented in the TIMBL software package by Daelemans
and Van den Bosch (2005). A variety of feature models have been tested, but we
only report results for the optimal model for each language, which is characterized
in relation to the standard model defined in section 3.2. Standard settings for the
TIMBL learner include k = 5 (number of nearest distances), MVDM metric down
to a threshold of | = 3, and distance weighted class voting with Inverse Distance
weights (ID).

Final evaluation has been performed using either k-fold cross-validation or a
held-out test set, as shown in the last column in table 1. Evaluation on held-out data
has in turn been preceded by a tuning phase using either k-fold cross-validation
or a development test set, as described for each language below. The diversity in
evaluation methods is partly a result of practical circumstances and partly motivated
by the concern to make results comparable to previously published results for a

10 The notation Conj; /Conj, under Coord for Chinese and English signifies that coordination
is analyzed as a head-initial or head-final construction depending on whether the underlying
phrase type is head-initial (e.g., verb phrases) or head-final (e.g., noun phrases).

' Whereas postpositions generally appear as suffixes on nouns, there are marginal cases
where they occur as separate words and are then treated as heads. Hence, the brackets
around Ad in the AP column for Turkish.
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given language. Thus, while results on the Penn Treebank are customarily obtained
by training on sections 2-21 and testing on section 23 (using any of the remaining
sections as a development test set), results on the Turkish Treebank have so far been
based on ten-fold cross-validation, which is well motivated by the limited amount of
data available. It should also be noted that the amount of work devoted to model
selection and parameter optimization varies considerably between the languages,
with Swedish and English being most thoroughly investigated while the results for
other languages, notably Dutch, German and Turkish, are still preliminary and can
probably be improved substantially.

The evaluation metrics used throughout are the unlabeled attachment score ASy,
which is the proportion of tokens that are assigned the correct head (regardless of
dependency type), and the labeled attachment score AS;, which is the proportion of
tokens that are assigned the correct head and the correct dependency type, following
the proposal of Lin (1998). All results are presented as mean scores per token, with
punctuation tokens excluded from all counts.!? For each language, we also provide
a more detailed breakdown with (unlabeled) attachment score, precision, recall and
F measure for individual dependency types.

Before we turn to the experimental results, a caveat is in order concerning
their interpretation and in particular about cross-linguistic comparability. The main
point of the experimental evaluation is to corroborate the claim that MaltParser
is language-independent enough to achieve reasonably accurate parsing for a wide
variety of languages, where the level of accuracy is related, whenever possible, to
previously obtained results for that language. In order to facilitate this kind of
comparison, we have sometimes had to sacrifice comparability between languages,
notably by using training sets of different size or different procedures for obtaining
accuracy scores as explained earlier. This means that, even though we sometimes
compare results across languages, such comparisons must be taken with a pinch
of salt. Although a more controlled cross-linguistic comparison would be very
interesting, it is also very difficult to achieve given that available resources are
very diverse with respect to standards of annotation, the amount of annotated
data available, the existence of accurate part-of-speech taggers, etc. Faced with this
diversity, we have done our best to come up with a reasonable compromise between
the conflicting requirements of ensuring cross-linguistic comparability and being
faithful to existing theoretical and practical traditions for specific languages and
treebanks. This means, for example, that we retain the original arc labels for all
treebanks, so that users of these treebanks can easily relate our results to theirs,
even though this has the consequence that, e.g., subjects will be denoted by a variety
of labels such as SUB, SBJ, SUBJ and Sb, but all arc labels will be accompanied
by descriptions that should make them understandable also for readers who are not
familiar with a given treebank annotation scheme.

12 Although punctuation tokens are excluded in the calculation of accuracy scores, they are
included during parsing. No changes have been made to the tokenization or sentence
segmentation found in the respective treebanks, except for Turkish (see section 4.2.10).
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Table 3. Overview of results. Model = Best feature model (— = omitted, + = added,
— = replaced by ), Settings = TIMBL settings; ASy = Unlabeled attachment score;
AS; = Labeled attachment score

Language Model Settings ASy  ASg
Bulgarian Valw(a) — ss(w(a)))] Standard 81.3 73.6
Chinese Standard k=61=28 81.1 79.2
Czech Standard Standard 80.1 72.8
Danish [w(h(og)) = ss(w(h(ag))); —w(t1)] Standard 85.6 79.5
Dutch Standard k=10 84.7 79.2
English Standard k=17,1=5 88.1 86.3
German [=w(h(a¢)); —w(t1); +p(02)] k=13,1IL 88.1 83.4
Ttalian Standard Standard 82.9 75.7
Swedish Standard Standard 86.3 82.0
Turkish [—=p(a1);—p(12); —p(t3); —w(h(60)); —wW(T1)] Standard 81.6 69.0
4.2 Results

Table 3 gives an overview of the results, summarizing for each language the optimal
feature model and TIMBL parameter settings, as well as the best unlabeled and
labeled attachment scores. In the following subsections, we analyze the results for
each language in a little more detail, making state-of-the-art comparisons where
this is possible. The earliest experiments were those performed on Swedish and
English and the standard models and settings are mainly based on the results of
these experiments. It is therefore natural to treat Swedish and English first, with the
remaining languages following in alphabetical order.

4.2.1 Swedish

The Swedish data come from Talbanken (Einarsson 1976), a manually annotated
corpus of both written and spoken Swedish, created at Lund University in the
1970s. We use the professional prose section, consisting of material taken from
textbooks, newspapers and information brochures. Although the original annotation
scheme is an eclectic combination of constituent structure, dependency structure,
and topological fields (Teleman 1974), it has been possible to convert the annotated
sentences to dependency graphs with very high accuracy. In the conversion process,
we have reduced the original fine-grained classification of grammatical functions to
a more restricted set of 17 dependency types, mainly corresponding to traditional
grammatical functions such as subject, object and adverbial. We have used a pseudo-
randomized data split, dividing the data into 10 sections by allocating sentence i
to section imod 10. We have used sections 1-9 for 9-fold cross-validation during
development and section O for final evaluation.

The overall accuracy scores for Swedish, obtained with the standard model and
standard settings, are ASy = 86.3% and AS; = 82.0%. Table 4 gives unlabeled
attachment score (ASy), labeled precision (P), recall (R) and F measure (F) for
individual dependency types in the Swedish data. These types can be divided into
three groups according to accuracy. In the high-accuracy set, with a labeled F
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Table 4. Attachment score (ASy ), precision (P ), recall (R) and F measure per
dependency type for Swedish (held-out test set, section ()

Dependency Type n ASy P R F
Adverbial (ADV) 1607 79.8 75.8 76.8 76.3
Apposition (APP) 42 23.8 38.1 19.0 254
Attribute (ATT) 950 81.3 79.9 78.5 79.2
Coordination (CC) 963 82.5 78.1 79.8 78.9
Determiner (DET) 947 92.6 88.9 90.2 89.5
Idiom (ID) 254 72.0 72.5 58.3 64.6
Infinitive marker (IM) 133 98.5 98.5 98.5 98.5
Infinitive complement (INF) 10 100.0 100.0 30.0 46.2
Object (OBJ) 585 88.0 78.2 77.3 77.7
Preposition dependent (PR) 985 94.2 88.6 92.7 90.6
Predicative (PRD) 244 90.6 76.7 77.0 76.8
Root (ROOT) 607 913 84.6 91.3 87.8
Subject (SUB) 957 89.8 86.7 82.5 84.5
Complementizer dependent (UK) 213 85.0 89.4 83.6 86.4
Verb group (VC) 238 93.7 82.1 90.6 86.1
Other (XX) 29 82.8 85.7 20.7 333
Total 8764 86.3 82.0 82.0 82.0

measure from 84% to 98%, we find all dependency types where the head is
a closed class word: IM (marker — infinitive), PR (preposition — noun), UK
(complementizer — verb) and VC (auxiliary verb — main verb). We also find the
type DET (noun — determiner), which has similar characteristics although the
determiner is not treated as the head in the Swedish annotation. The high-accuracy
set also includes the central dependency types ROOT and SUB, which normally
identify the finite verb of the main clause and the grammatical subject, respectively.

In the medium-accuracy set, with a labeled F measure in the range of 75-80%,
we find the remaining major dependency types, ADV (adverbial), ATT (nominal
modifier), CC (coordination), OBJ (object) and PRD (predicative). However, this set
can be divided into two subsets, the first consisting of ADV, ATT and CC, which have
an unlabeled attachment score not much above the labeled F measure, indicating
that parsing errors are mainly due to incorrect attachment. This is plausible since
ADV and ATT are the dependency types typically involved in modifier attachment
ambiguities and since coordination is also a source of attachment ambiguities. The
second subset contains OBJ and PRD, which both have an unlabeled attachment
score close to 90%, which means that they are often correctly attached but may
be incorrectly labeled. This is again plausible, since these types identify nominal
arguments of the verb (other than the subject), which can often occur in the same
structural positions.

Finally, we have a low-accuracy set, with a labeled F measure below 70%, where
the common denominator is mainly low frequency: INF (infinitive complements),
APP (appositions), XX (unclassifiable). The only exception to this generalization is
the type ID (idiom constituent), which is not that rare but which is rather special
for other reasons. All types in this set except APP have a relatively high unlabeled
attachment score, but their labels are seldom used correctly.
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Table 5. Attachment score (ASy ), precision (P ), recall (R) and F measure per
dependency type for English (held-out test set, section 23)

Dependency Type n ASy P R F
Adjective/adverb modifier (AMOD) 2072 782 80.7 73.0 76.7
Other (DEP) 259 429 565 301 393
Noun modifier (NMOD) 21002  91.2 91.1 908 91.0
Object (OBJ) 1960 86.5 789 835 8l.1
Preposition modifier (PMOD) 5593  90.2 877 89.5 88.6
Predicative (PRD) 832 900 759 71.8 738
Root (ROOT) 2401 864 78.8 864 824
Complementizer dependent (SBAR) 1195 86.0 87.1 851 86.1
Subject (SBJ) 4108 900 90.6 881 893
Verb group (VC) 1771 988 934 966 950
Adverbial (VMOD) 8175 803 765 77.1 76.8
Total 49368 88.1 863 863 863

Relating the Swedish results to the state of the art is rather difficult, since there is
no comparable evaluation reported in the literature, let alone based on the same data.
Voutilainen (2001) presents a partial and informal evaluation of a Swedish FDG
parser, based on manually checked parses of about 400 sentences from newspaper
text, and reports F measures of 95% for subjects and 92% for objects. These results
clearly indicate a higher level of accuracy than that attained in the experiments
reported here, but without knowing the details of the data selection and evaluation
procedure it is very difficult to draw any precise conclusions.

4.2.2 English

The data set used for English is the standard data set from the Wall Street Journal
section of the Penn Treebank, with sections 2-21 used for training and section 23 for
testing (with section 00 as the development test set). The data has been converted
to dependency trees using the head percolation table of Yamada and Matsumoto
(2003), and dependency type labels have been inferred using a variation of the
scheme employed by Collins (1999), which makes use of the nonterminal labels
on the head daughter, non-head daughter and parent corresponding to a given
dependency relation. However, instead of simply concatenating these labels, as in
the Collins scheme, we use a set of rules to map these complex categories onto a set
of 10 dependency types, including traditional grammatical functions such as subject,
object, etc. More details about the conversion can be found in Nivre (2006).

The best performing model for English is the standard model and the TIMBL
parameter settings deviate from the standard ones only by having a higher k value
(k =7) and a higher threshold for MVDM (I = 5). The overall accuracy scores for
English are ASy = 88.1% and AS; = 86.3%. The relatively narrow gap between
unlabeled and labeled accuracy is probably due mainly to the coarse-grained nature
of the dependency type set and perhaps also to the fact that these labels have
been inferred automatically from phrase structure representations. Table 5 shows
the accuracy for individual dependency types in the same way as for Swedish in
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table 4, and again we can divide dependency types according to accuracy into three
sets. In the high-accuracy set, with a labeled F measure from 86% to 95%, we find
SBJ (subject) and three dependency types where the head is a closed class word:
PMOD (preposition — complement/modifier), VC (auxiliary verb — main verb)
and SBAR (complementizer — verb). In addition, this set includes the type NMOD,
which includes the noun-determiner relation as an important subtype.

In the medium-accuracy set, with a labeled F measure from 74% to 82%, we find
the types AMOD, VMOD, OBJ, PRD and ROOT. The former two dependency types
mostly cover adverbial functions, and have a labeled accuracy not too far below
their unlabeled attachment score, which is an indication that the main difficulty
lies in finding the correct head. By contrast, the argument functions OBJ and PRD
have a much better unlabeled attachment score, which shows that they are often
attached to the correct head but misclassified. This tendency is especially pronounced
for the PRD type, where the difference is more than 15 percentage points, which
can probably be explained by the fact that this type is relatively infrequent in the
annotated English data. The low-accuracy set for English only includes the default
classification DEP. The very low accuracy for this dependency type can be explained
by the fact that it is both a heterogeneous category and the least frequent dependency
type in the data.

Compared to the state of the art, the unlabeled attachment score is about 4%
lower than the best reported results, obtained with the parser of Charniak (2000) and
reported in Yamada and Matsumoto (2003).!* For the labeled attachment score, we
are not aware of any strictly comparable results, but Blaheta and Charniak (2000)
report an F measure of 98.9% for the assignment of grammatical role labels to
phrases that were correctly parsed by the parser described in Charniak (2000),
using the same data set. If null labels are excluded, the F score drops to 95.6%.
The corresponding F measures for MaltParser are 98.0% and 97.8%, treating the
default label DEP as the equivalent of a null label. The experiments are not strictly
comparable, since they involve different sets of functional categories (where only
the labels SBJ and PRD are equivalent) and one is based on phrase structure and
the other on dependency structure, but it nevertheless seems fair to conclude that
MaltParser’s labeling accuracy is close to the state of the art, even if its capacity to
derive correct structures is not.

4.2.3 Bulgarian

For the current experiments we used a subset of BulTreeBank (Simov et al. 2002),
since the complete treebank is not officially released and still under development. The
set contains 71703 words of Bulgarian text from different sources, annotated with
constituent structure. Although the annotation scheme is meant to be compatible
with the framework of HPSG, syntactic heads are not explicitly annotated, which

13 The score for the Charniak parser has been obtained by converting the output of the parser
to dependency structures using the same conversion as in our experiments, which means
that the comparison is as exact as possible. For further comparisons, see Nivre (2006).
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Table 6. Attachment score (ASy ), precision (P), recall (R) and F measure per
dependency type for Bulgarian (mean of 8-fold cross-validation, frequency counts
rounded to whole integers)

Dependency Type n ASy P R F
Adverbial (ADV) 914 67.2 59.4 51.2 55.0
Apposition (APP) 120 65.5 54.1 49.0 51.9
Attribute (ATT) 1297 79.6 74.0 75.4 74.7
Coordination (CC) 555 53.6 52.8 48.5 50.6
Determiner (DET) 259 82.9 80.2 76.5 78.3
Idiom (ID) 214 94.6 90.2 89.5 89.8
Object (OBJ) 949 85.9 66.9 70.4 68.6
Preposition dependent (PR) 1137 93.6 91.8 93.2 92.5
Predicative (PRD) 254 89.8 65.7 73.3 69.3
Root (ROOT) 635 88.7 76.8 88.7 82.3
Subject (SUBJ) 600 82.7 68.9 66.8 67.8
Complementizer dependent (UK) 418 88.1 87.5 88.7 88.1
Verb group (VC) 397 79.8 71.2 72.5 71.8
Total 7748 81.3 73.6 73.6 73.6

means that the treebank must be converted to dependency structures using the same
kind of head percolation tables and inference rules that were used for the English
data, except that for Bulgarian the converted treebank also contains non-projective
dependencies. In most cases, these involve subordinate da-clauses, where we often
find subject-to-object or object-to-object raising. In these cases, we have taken da
to be the head of the subordinate clause with the main verb dependent on da and
the raised subject or object dependent on the main verb. More details about the
conversion can be found in Marinov and Nivre (2005).

Experiments were performed with several models but the highest accuracy was
achieved with a variant of the standard model, where all lexical features are based
on suffixes of length 6, rather than the full word forms. That is, every lexical feature
w(a) (with address function a) is replaced by sg(w(a)) (cf. section 2.3). The overall
accuracy scores for Bulgarian are 81.3% (ASy) and 73.6% (ASy). Using suffixes
instead of full forms makes the data less sparse, which can be an advantage for
languages with limited amounts of data, especially if the endings of content words
can be expected to carry syntactically relevant information. The optimal suffix length
can be determined using cross-validation, and a length of 6 seems to work well for
several languages, presumably because it captures the informative endings of content
words while leaving most function words intact.

Table 6 gives accuracy, precision, recall and balanced F measures for individual
dependency types. The overall trend is the same as for Swedish and English in
that dependency relations involving function words tend to have higher accuracy
than relations holding primarily between content words. Thus, the highest ranking
dependency types with respect to the F measure are PR (preposition — noun) and
UK (complementizer — verb), together with ID (multi-word unit), which in the
Bulgarian data includes verbs taking the reflexive/possessive pronouns se and si.
Further down the list we find as expected the major verb complement types OBJ
(object) and PRD (predicative complement) but also SUBJ (subject), which has



118 J. Nivre et al.

considerably lower accuracy than the corresponding type in Swedish and English.
This is a reflection of the more flexible word order in Bulgarian.

Other dependency types that are ranked lower for Bulgarian than for the other
languages considered so far are DET (noun — determiner) and VC (auxiliary verb
«— main verb). In the former case, since Bulgarian lacks free-standing determiners
like English the, this category was reserved for demonstratives (this, that, etc.), which
occurred infrequently. In the latter case, this again seems to be related to word order
properties, allowing the verbs to be separated by adverbials or even subordinate
clauses (which will also lead the parser to erroneously connect verbs that belong to
different clauses). Finally, we note that coordinate structures (CC) and adverbials
(ADV) have very low accuracy (with an F measure below 60%). For adverbials, one
possible error source is the fact that many adverbs coincide in form with the third
person singular form of adjectives.

There are no other published results for parsing Bulgarian, except for a paper
by Tanev and Mitkov (2002), who report precision and recall in the low 60s for
a rule-based parser. However, this parser has only been tested on 600 syntactic
phrases, as compared to the 5080 sentences used in the present study, so it is very
difficult to draw any conclusions about the relative quality of the parsers.

4.2.4 Chinese

The Chinese data are taken from the Penn Chinese Treebank (CTB), version 5.1
(Xue et al. 2005), and the texts are mostly from Xinhua newswire, Sinorama news
magazine and Hong Kong News. The annotation of CTB is based on a combination
of constituent structure and grammatical functions and has been converted in the
same way as the data for English and Bulgarian, with a head percolation table
created by a native speaker for the purpose of machine translation. Dependency
type labels have been inferred using an adapted version of the rules developed for
English, which is possible given that the treebank annotation scheme for CTB is
modeled after that for the English Penn Treebank. More details about the conversion
can be found in Hall (2006).

One often underestimated parameter in parser evaluation is the division of data
into training, development and evaluation sets. Levy and Manning (2003) report up
to 10% difference in parsing accuracy for different splits of CTB 2.0. We have used
the same pseudo-randomized split as for Swedish (cf. section 4.2.1), with sections
1-8 for training, section 9 for validation, and section O for final evaluation. The
results presented in this article are based on gold-standard word segmentation and
part-of-speech tagging.

The best performing model for Chinese is the standard one and the same goes
for TIMBL settings except that k = 6 and [ = 8. Table 7 presents the unlabeled
attachment score (ASy), labeled precision (P), recall (R) and F measure (F) for
individual dependency types in the Chinese data. We see that the overall accuracy
scores for Chinese are ASy = 81.1% and AS; = 79.2%, and the difference between
labeled and unlabeled accuracy is generally very small also on the level of individual
dependency types, with a few notable exceptions. Both SBJ (subject) and VC (verb
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Table 7. Attachment score (ASy ), precision (P ), recall (R) and F measure per
dependency type for Chinese (held-out test set, section 0)

Dependency Type n ASy P R F
Adjective/adverb modifier (AMOD) 1503 95.2 95.8 94.5 95.1
Other (DEP) 2999 90.5 92.4 89.5 90.9
Noun modifier (NMOD) 13046 85.4 86.3 85.2 85.7
Object (OBJ) 2802 86.0 82.8 85.3 84.0
Preposition modifier (PMOD) 1839 77.3 81.3 77.2 79.2
Predicative (PRD) 467 78.8 81.4 76.0 78.6
Root (ROOT) 1880 70.5 55.4 70.5 62.0
Complementizer dependent (SBAR) 1296 83.6 83.6 83.3 83.4
Subject (SBJ) 3242 83.2 733 78.5 75.8
Verb group (VC) 940 80.0 76.0 75.1 75.5
Adverbial (VMOD) 12043 72.6 71.3 68.8 70.0
Total 42057 81.1 79.2 79.2 79.2

chain) have considerably lower labeled F measure than unlabeled attachment score,
which indicates that these relations are difficult to classify correctly even if the head-
dependent relations are assigned correctly. For the special ROOT label, we find a
very low precision, which reflects fragmentation in the output (since too many tokens
remain attached to the special root node), but even the recall is substantially lower
than for any other language considered so far. This may indicate that the feature
model has not yet been properly optimized for Chinese, but it may also indicate a
problem with the arc-eager parsing strategy adopted in all the experiments.

It is rather difficult to compare results on parsing accuracy for Chinese because of
different data sets, word segmentation strategies, dependency conversion methods,
and data splits. But the unlabeled attachment score obtained in our experiments is
within 5% of the best reported results for CTB (Cheng et al. 2005).

4.2.5 Czech

The Prague Dependency Treebank (PDT) consists of 1.5M words of newspaper text,
annotated on three levels, the morphological, analytical and tectogrammatical levels
(Hajic et al. 2001). Our experiments all concern the analytical annotation, which uses
a set of 28 surface-oriented grammatical functions (Bohmova et al. 2003). Unlike the
treebanks discussed so far, PDT is a genuine dependency treebank also including
non-projective dependencies.

The best results for Czech are again based on the standard model with standard
settings, although it should be acknowledged that the sheer size of the Czech data
sets makes it hard to perform extensive optimization of feature model and learning
algorithm parameters. The experiments are based on the designated training and
development sets in the treebank distribution, with final evaluation on the separate
test set (HajiC et al. 2001).

Although less than 2% of all arcs in the training data are non-projective, they are
distributed over as many as 23% of the sentences. It follows that the configuration of
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Table 8. Attachment score (ASy ), precision (P), recall (R) and F measure for
selected dependency types for Czech (‘held-out test set, etest section)

Dependency Type n ASy P R F
Adverbial (Adv) 12948 88.0 75.3 74.2 74.7
Attribute (Atr) 36239 86.9 82.8 83.6 83.2
Subordinate conjunction (AuxC) 2055 75.9 80.5 75.8 78.1
Preposition (AuxP) 12658 72.0 73.7 71.7 72.4
Auxiliary Verb (AuxV) 1747 85.6 91.3 85.1 88.2
Rhematizer (AuxZ) 1962 76.9 70.0 73.9 71.9
Coordination node (Coord) 2716 314 39.0 31.0 34.5
Ellipsis handling (ExD) 2529 59.9 43.6 31.2 364
Object (Obj) 10480 81.6 66.5 62.6 64.5
Nominal predicate’s nominal part (Pnom) 1668 80.2 63.8 70.3 66.9
Main predicate (Pred) 2892 58.2 45.7 53.1 49.1
Root node (ROOT) 7462 77.0 61.5 77.0 68.4
Subject (Sb) 9364 79.8 68.6 69.8 69.3
Total 108128 80.1 72.8 72.8 72.8

MaltParser used for all languages, constructing only projective graphs, cannot even
in theory achieve an exact match for these sentences. To cope with non-projectivity,
the concept of pseudo-projective parsing was introduced and evaluated in Nivre and
Nilsson (2005). An overview of this approach is given in section 3.4.

Using non-projective training data, i.e., without applying any tree transformations
and encodings, the overall accuracy scores are ASy = 78.5% and AS; = 71.3%. By
simply transforming all non-projective sentences to projective, without encoding the
transformations in dependency type labels (baseline), an improvement is achieved
for both ASy = 79.1% and AS; = 72.0%. This indicates that it helps to make the
input conform to the definition of projectivity, despite the fact that the trees are
distorted and that it is not possible to recover non-projective arcs in the output of
the parser.

In Nivre and Nilsson (2005), three types of encoding schemes were evaluated
in order to recover the non-projective structure by an inverse transformation. The
encodings increase the burden on the parser, since it now also has to distinguish
between pseudo-projective arcs and the original projective arcs. The differences
between different encodings are small and not statistically significant, but all three
encodings increase both labeled and unlabeled attachment score in comparison
both to the projectivized baseline and to the use of non-projective training data (all
differences being significant beyond the 0.01 level according to McNemar’s test).
Compared to the projectivized baseline, the improvement is as high as 1 precentage
point for ASy = 80.1% and 0.8 percentage points for AS; = 72.8%.

A closer look at the 13 most frequent dependency types in table 8 reveals a
larger drop from unlabeled to labeled accuracy compared to other languages such
as English and Chinese. This is partly a result of the more fine-grained set of
dependency types for Czech, but the more flexible word order for major clause
constituents like Sb (subject) and Obj (object) is probably important as well. On
the other hand, dependents of the types AuxC (subordinate conjunction), AuxP
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(preposition), AuxV (auxiliary verb) or Coord (conjunction) actually have a higher
F measure than ASy, due to higher precision. In contrast to Sb and Obj, these
dependents all come from closed word classes, which often uniquely identifies the
dependency type. In addition, it is worth noting the surprisingly low accuracy for
Coord, lower than for most other languages. This may indicate that the analysis
of coordination in PDT, treating the coordinating conjunction as the head, does
not interact well with the parsing strategy and/or feature models adopted in the
experiments.'

We are not aware of any published results for labeled accuracy, but the unlabeled
attachment score obtained is about 5% lower than the best results reported for a
single parser, using the parser of Charniak (2000), adapted for Czech, with corrective
post-processing to recover non-projective dependencies (Hall and Novak 2005).

4.2.6 Danish

The Danish experiments are based on the Danish Dependency Treebank (DDT),
which is based on a subset of the Danish PAROLE corpus and annotated according
to the theory of Discontinuous Grammar (Kromann 2003). This annotation involves
primary dependencies, capturing grammatical functions, and secondary dependencies,
capturing other relations such as co-reference. Our experiments only concern primary
dependencies, since including secondary dependencies as well would have violated
the SINGLE-HEAD constraint (cf. section 2.1), but the dependency type set is still
the most fine-grained of all, with 54 distinct dependency types. The annotation is
not restricted to projective dependency graphs, and while only about 1% of all
dependencies are non-projective, the proportion of sentences that contain at least
one non-projective dependency is as high as 15%.

The treebank has been divided into training, validation and test sets using the
same pseudo-randomized splitting method described earlier for Swedish and Chinese.
The training data for the experiments have been projectivized in the same way as
the Czech data, with a similar improvement compared to the use of non-projective
training data. However, none of the encoding schemes for recovering non-projective
dependencies in the output of the parser led to any improvement in accuracy (nor
to any degradation), which is probably due to the fact that the training data for
non-projective dependencies are much more sparse than for Czech.

The best performing model for Danish is a modification of the standard model,
where the feature w(t;) (the word form of the first lookahead token) is omitted, and
the feature w(h(ag)) (the word form of the head of the top token) is replaced by the
suffix feature sq(w(h(op))). The TIMBL settings are standard. The overall accuracy
scores for Danish are ASy = 85.6% and AS; = 79.5%." The relatively wide gap
between unlabeled and labeled accuracy is probably due mainly to the fine-grained

4 In more recent work, Nilsson et al. (2006) have shown how parsing accuracy for
coordination in Czech can be improved by transforming the representations so that
coordinating conjunctions are not treated as heads internally.

15 The labeled attachment score is slightly lower than the one published in Nivre and Hall
(2005), where results were based on the development test set.
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Table 9. Attachment score (ASy ), precision (P ), recall (R) and F measure per
dependency type for Danish, n > 10 (held-out test set, section ()

Dependency Type n ASy P R F
Elliptic modifier (<MOD>) 11 45.5 0.0 0.0 -
Root (ROOT) 554 91.2 87.5 91.2 89.3
Adjectival object (AOBJ) 17 70.6 50.0 17.6 26.0
Parenthetical apposition (APPA) 20 50.0 53.8 35.0 424
Restrictive apposition (APPR) 23 43.5 69.2 39.1 50.0
Adverbial object (AVOBJ) 19 78.9 30.8 21.1 25.0
Conjunct (CONJ) 399 80.7 77.4 77.4 77.4
Coordinator (COORD) 299 75.6 75.4 74.9 75.1
Direct object (DOBJ) 504 90.1 71.5 77.8 77.6
Expletive subject (EXPL) 36 100.0 89.5 94.4 91.9
Indirect object (I0BJ) 13 100.0 66.7 154 25.0
List item (LIST) 17 294 57.1 235 333
Locative object (LOBJ) 117 88.0 53.0 453 48.8
Modifier (MOD) 1809 77.9 70.6 71.0 70.8
Parenthetical modifier (MODP) 15 26.7 0.0 0.0 -
Modifying proper name (NAME) 13 30.8 22.2 15.4 18.2
Modifying first name (NAMEF) 96 91.7 79.8 90.6 84.9
Nominal object (NOBJ) 1831 92.6 88.5 91.6 90.0
Verbal particle (PART) 21 85.7 62.5 23.8 34.5
Prepositional object (POBJ) 501 79.6 64.4 66.7 65.5
Possessed (POSSD) 171 90.1 91.3 854 87.1
Predicative (PRED) 251 86.5 62.0 65.7 63.8
Quotation object (QOBJ) 37 78.4 51.9 75.7 61.6
Relative clause modification (REL) 131 59.5 62.7 56.5 594
Subject (SUBJ) 892 93.6 90.7 90.7 90.7
Title of person (TITLE) 19 78.9 63.6 73.7 68.3
Temporal adjunct (TOBJ) 16 50.0 62.5 31.3 41.7
Verbal object (VOBJ) 635 95.1 92.7 93.4 93.0
Direct quotation (XPL) 12 0.25 0.0 0.0 -
Total 8530 85.6 79.5 79.5 79.5

nature of the dependency type set in combination with a relatively small training
data set.

Table 9 shows the unlabeled attachment score (ASy), precision (P), recall (R)
and F measure (F) for dependency types occurring at least 10 times in the test
set. It is clear that low-frequency types (n < 100) generally have very low labeled
precision and recall, despite sometimes having a quite high unlabeled accuracy. A
striking example is indirect object (IOBJ), which has perfect unlabeled accuracy but
only 15% labeled recall. Concentrating on types that occur at least 100 times in
the test set, we see a pattern that is very similar to the one observed for the closely
related language Swedish, despite important differences in the style of annotation.
Thus, we can observe a very high accuracy (F > 90) for dependencies involving
function words, notably VOBJ, which includes dependencies linking verbs to function
words (auxiliary verb — main verb, marker — infinitive, complementizer — verb),
and NOBJ, which includes dependencies linking prepositions and determiners to
nominals, but also for subjects, both normal subjects (SUBJ) and the much less
frequent expletive subjects (EXPL), and roots (ROOT). Furthermore, we see that
other arguments of the verb (DOBJ, IOBJ, LOBJ, PRED) have a high unlabeled
accuracy but (sometimes substantially) lower labeled accuracy, while the generic
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adjunct type MOD has lower accuracy, both labeled and unlabeled. Finally, both
Danish and Swedish have comparatively high accuracy for coordination, which
in Danish is split into CC (conjunct — coordinator) and COORD (conjunct; —
conjunct;, (). Compared to the results for Czech, this indicates that an analysis of
coordination where a conjunct, rather than the coordinator, is treated as the head is
easier to cope with for the parser.

McDonald and Pereira (2006) report an unlabeled attachment score for primary
dependency types in DDT of 86.8%.! However, these results are based on gold
standard part-of-speech tags, whereas our experiments use automatically assigned
tags with an accuracy rate of 96.3%. Replicating the experiment with gold standard
tags, using the same feature model and parameter settings, results in an unlabeled
attachment score of 87.3%, which indicates that MaltParser gives state-of-the-art
performance for Danish.

4.2.7 Dutch

The Dutch experiments are based on the Alpino Treebank (Beek et al. 2003). The
text material (186k non-punctuation tokens) consists primarily of two sections of
newspaper text (125k and 21k), plus two smaller segments containing questions (21k)
and (in part) manually constructed sentences for parser development and annotation
guide examples (19k). As the latter type of material is atypical, it is only used for
training purposes, whereas the smaller newspaper text section is used as held out
material for final testing.

The syntactic annotation of the Alpino Treebank is a mix of constituent structure
and dependency relations, nearly identical to the syntactic annotation of the Spoken
Dutch Corpus (Wouden et al. 2002). It was converted to a pure dependency structure
employing a head percolation table, removing secondary relations as indicated by
traces. Multi-word units, consisting of a sequence of words without any further
syntactic analysis, were concatenated into a single word using underscores. Finally,
non-projective structures were projectivized using the same baseline procedure as for
Danish (i.e., without extending the dependency type labels or attempting to recover
non-projective dependencies in the output of the parser). Since the original part-
of-speech tags in the Alpino Treebank are coarse-grained and lack any additional
feature information besides the word class, all tokens were retagged with the memory-
based tagger for Dutch (Daclemans et al. 2003).

Ten-fold cross-validation was used to manually optimize the TIMBL settings.
Experimentation confirmed that the standard settings with MVDM, no feature
weighting, and distance weighted class voting generally performs best. However,
choosing a higher value for k (k = 10) usually gives an improvement of one to
two percentage points for Dutch. The results obtained on held out data using
the standard model are ASy = 84.7% and ASp = 79.2%. The relatively large

16 It should be pointed out that McDonald and Pereira (2006) also consider secondary
dependency arcs, which are beyond the reach of MaltParser in its current configuration,
and that the result reported is actually the highest precision of their parser when restricted
to primary dependencies.
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Table 10. Attachment score (ASy ), precision (P ), recall (R) and F measure per
dependency type for Dutch (held-out test set)

Dependency Type n ASy P R F
Apposition (APP) 299 73.6 78.8 71.9 75.2
Body of embedded clause (BODY) 88 85.8 83.9 84.3 84.1
Conjunct (CNJ) 997 70.0 72.8 68.6 70.6
Coordinator (CRD) 9 44.4 28.6 222 25.0
Determiner (DET) 3239 97.2 96.1 96.9 97.0
Closing element of circumposition (HDF) 13 53.8 70.0 53.8 60.8
Locative/directional complement (LD) 239 68.6 40.2 21.3 27.9
Measure complement (ME) 33 72.7 69.2 54.5 61.0
Modifier (MOD) 5069 78.3 71.1 73.9 72.5
Object of adjective or adverb (OBCOMP) 51 74.5 90.0 529 66.6
Direct object (OBJ1) 3392 90.3 86.0 86.4 86.2
Indirect object (OBJ2) 56 80.4 77.8 12.5 21.5
Prepositional complement (PC) 344 73.8 51.6 28.5 36.7
Suppletive object (POBJ1) 14 78.6 333 35.7 34.5
Predicative complement (PREDC) 428 79.4 65.6 56.1 60.5
Predicate modifier (PREDM) 61 65.6 54.5 9.8 16.6
Root (ROOT) 1874 82.7 70.8 82.7 76.3
Obligatory reflexive object (SE) 53 83.0 72.2 73.6 72.9
Subject (SU) 186 85.2 80.8 78.1 79.4
Suppletive subject (SUP) 19 89.5 45.0 474 46.2
Separable verbal particle (SVP) 259 85.3 69.6 61.8 65.5
Verbal complement (VC) 1074 89.0 80.4 85.6 82.9
Total 20263 84.7 79.2 79.2 79.2

gap between the labeled and unlabeled scores may be attributed to the relatively
fine-grained set of dependency labels. Table 10 gives unlabeled attachment score
(ASy), labeled precision (P), recall (R) and F measure (F) for individual dependency
types. We can observe a general trend towards better scores for the more frequent
dependency labels, but there are notable exceptions such as the relatively high score
for the infrequently occurring SE (reflexive object) and the low score on the more
frequent PC (prepositional complement) and LD (locative/directional complement).

As for several other languages, we can distinguish three groups with high, medium
and low F measures respectively. The high score set (F > 80%) includes the
dependency relations indicated by closed class words: DET (determiner — noun),
VC (auxiliary verb — main verb), and BODY (complementizer — verb). Somewhat
surprisingly, this group also includes OBJ1 (direct object), perhaps because this is
the second most frequent dependency relation.

The low score group (F < 60%) includes the rather infrequent suppletive
subject (SUP) and object (POBJ1). Furthermore, it involves four classes which
are canonically expressed in the form of a prepositional phrase — PC (prepositional
complement), OBJ2 (indirect object), LD (locative/directional complement) and
PREDM (predicate modifier) — and where the sometimes subtle distinction is often
of a semantic rather than a syntactic nature. The fact that coordinator (CRD) is
also in the low score group is somewhat counter-intuitive, because it is indicated
by a closed word class, normally the word en ‘and’, but the result is consistent with
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the low accuracy for coordination in Czech, given that both treebanks treat the
coordinating conjunction as the head of a coordinate structure.

The remaining 11 types belong to the medium score group (60% < F < 80%),
which includes the by far most frequent class MOD (modifier). It is interesting to
note that the scores for a conceptually difficult class like APP (apposition) are still
quite good. The same goes for the potentially highly ambiguous CONIJ (conjunct),
although there seems to be a trade-off here with the low scores noted for CRD
earlier.

The Alpino parser is a rule-based, HPSG-style parser that is currently the state-
of-art parser for Dutch (Bouma et al. 2001). It has an extensive and detailed lexicon
(including, e.g., subcategorization information) and a MaxEnt-based disambiguation
module. Its output is in the same format as the Alpino Treebank. We used it to
parse the held out material and converted the parse trees to dependency structures,
using exactly the same procedure as for converting the treebank, which includes
transforming non-projective to projective structures. Evaluation resulted in the scores
ASy = 93.2% and AS; = 91.2%. Clearly, there is still a substantial gap between the
two parsers. Also, the Alpino parser provides additional information, e.g., traces and
non-projective analyses, which is ignored here. Yet, given all the effort invested in
building the Alpino grammar, lexicon, and disambiguation strategy, it is interesting
to see that its performance can be approximated by a purely inductive approach
using fairly limited amounts of data.

4.2.8 German

The experiments for German are based on the Tiibingen Treebank of Written
German (TiiBa-D/Z) (Telljohann et al. 2005). The treebank is based on issues of the
German daily newspaper ‘die tageszeitung’ (taz) that appeared in April and May of
1999. The annotation of the treebank is constituency-based, but it is augmented by
function-argument structure on all levels, which allows a straightforward conversion
to dependencies for most phenomena. Heuristics are used only for apposition,
embedded infinitive clauses, and nominal postmodifications. Long-distance relations,
which are annotated in the constituency model via special labels, are translated into
non-projective dependencies. The set of dependency types is modeled after the one
used for the Constraint Dependency Grammar for German (Foth et al. 2004), a
manually written dependency grammar for German.

The best performing model for German modifies the standard model by omitting
the two lexical features w(h(op)) and w(t;) and by adding the part-of-speech of
an additional stack token p(o,). The TIMBL settings for German deviate from the
standard settings by using k = 13 and voting based on inverse linear weighting
(IL).

The overall accuracy scores for German are ASy = 88.1% and AS; = 83.4%.
The (unlabeled) results are comparable to results by Foth et al. (2004), who reached
89.0% accuracy when parsing the NEGRA treebank (Skut et al. 1997), another
treebank for German, which is also based on newspaper texts (but which uses a
different constituency-based annotation scheme). The labeled results are considerably
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Table 11. Attachment score (ASy ), precision (P), recall (R) and F measure for
selected dependency types for German (mean of 10-fold cross-validation, frequency
counts rounded to whole integers)

Dependency Type n ASy P R F
Adverbial (ADV) 2762 80.5 78.7 79.3 79.0
Determiner (DET) 4485 99.1 99.1 99.0 99.0
Genitive modifier (GenMOD) 571 79.5 59.1 66.3 62.5
Accusative Object (AccOBJ) 1466 82.4 66.6 73.4 69.8
Dative Object (DatOBJ) 219 79.0 62.4 164 26.0
Genitive Object (GenOBJ) 4 78.0 16.7 6.8 9.7
Predicate (PRED) 549 84.8 69.6 64.3 66.8
PP complement (PPOBJ) 399 83.1 54.7 41.6 47.3
Relative clause (RelCL) 241 54.1 56.9 52.6 54.7
Subject (SUBJ) 2931 92.0 85.7 86.3 86.0
Total 32555 88.1 83.4 83.4 83.4

higher than constituency parsing results reported for German, which reach a labeled
F measure of 75.3% when constituent nodes also include grammatical functions
(Kiibler et al. 2006).

Table 11 gives unlabeled attachment scores (ASy), labeled precision (P), recall
(R), and F measure (F) for selected dependency types. The overall trends are very
similar to what we have observed for other languages, notably Germanic languages
like Swedish and Danish. For example, both determiners (DET) and adverbials
(ADV) have labeled and unlabeled accuracy at about the same level (although
considerably higher for DET than for ADV), while arguments of the verb (AccOBJ,
DatOBJ, GenOBJ, PRED and PPOBJ) have substantially better unlabeled than
labeled accuracy. One difference, compared to Danish and Swedish, is that the lower
labeled accuracy also affects subjects (SUBJ), which is probably a reflection of the
fact that German exhibits freer word order thanks to case marking. The relatively
low labeled accuracy for different case-marked arguments is also an indication that
the parser would benefit from morphological information, which is currently not
included in the German part-of-speech tags.

Contrary to expectations that, with growing data size, adding more lexical features
would improve performance, experiments with all the lexical features of the standard
model showed a decrease in performance by 1.5 percentage points. The hypothesis
that this decrease is due to data sparseness is refuted by experiments with only 2000
sentences for training, where the decrease in performance is only 7.5%. These results
are consistent with those of Dubey and Keller (2003), who found that lexicalizing
a PCFG grammar for NEGRA results in a decrease in performance, although it
should be remembered that the first two lexical features are beneficial in the case of
MaltParser.

4.2.9 Italian

The Italian treebank used in the experiments is the Turin University Treebank
(TUT) (Bosco 2004), consisting of 1500 sentences and 41771 tokens. It is balanced
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Table 12. Attachment score (ASy ), precision (P), recall (R) and F measure per
dependency type for Italian (mean of 10-fold cross-validation, frequency counts rounded
to whole integers)

Dependency Type n ASy P R F
Apposition (APPOSITION) 69 44.4 54.2 47.8 50.8
Argument (ARG) 1351 95.0 92.7 94.5 93.6
Auxiliary verb (AUX) 96 92.1 90.5 94.2 923
Part of expression (CONTIN) 75 86.9 78.2 54.4 64.2
Coordination (COORDINATOR) 271 66.6 63.6 63.6 63.6
Other (DEPENDENT) 1 40.0 0.0 0.0 -
Reflexive complement (EMPTYCOMPL) 15 94.5 35.7 50.0 41.7
Indirect complement (INDCOMPL) 82 85.9 70.4 47.5 56.7
Indirect object (INDOBJ) 18 81.5 333 333 333
Interjection (INTERJECTION) 1 20.0 0.0 0.0 —
Object (OBJ) 222 84.9 333 333 333
Predicative complement (PREDCOMPL) 52 78.4 54.3 37.3 44.2
Restrictive modifier (RMOD) 1013 74.3 69.5 70.2 69.8
Subject (SUBJ) 256 75.5 64.8 58.6 61.5
Root (TOP) 150 75.5 63.5 77.2 69.7
Adverbial extraction (VISITOR) 13 74.6 0.0 0.0 -
Total 3683 82.9 75.7 75.7 75.7

over genres with 60% newspaper text, 30% legal text, and 10% from novels and
academic literature. The dependency annotation involves traces in order to avoid
non-projective structures, although there is in fact a certain number of non-projective
trees in the treebank.

The treebank has been converted to the format required by MaltParser without
significant loss of linguistic information, as described in Chanev (2005), replacing
traces if necessary by (possibly non-projective) dependency arcs. The dependency
tag set was reduced from 283 to 17 distinct tags, keeping only information about
syntactic dependency relations. The training data were projectivized using the same
procedure as for Danish and Dutch and tagged for part-of-speech using TnT
(Brants 2000). All experiments were performed using 10-fold cross-validation with
a randomized split.

The best performing feature model for Italian is the standard model, although
several simpler models give nearly the same results. The accuracy scores for Italian
are ASy = 82.9% and AS; = 75.7%, and table 12 shows the accuracy obtained for
different dependency types. It is striking that there are only two types that obtain
a really high accuracy in the Italian data, the type ARG, which is usually used for
relations between articles and nouns or prepositions and articles, and the type AUX,
which is used for auxiliary verbs. While these two types have a labeled F measure
well above 90%, no other type has a score higher than 70%. There is also a set
of low-frequency types that all have zero recall and precision. The relatively low
labeled accuracy for most dependency types in Italian is undoubtedly due partly to
sparse data, but it is also relevant that the inventory of dependency types is more
semantically oriented than for most other languages.

For Italian there are not any published results for statistical dependency parsing
except the preliminary results for MaltParser reported in Chanev (2005). Compared
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to Corazza et al. (2004), where state-of-the-art constituency parsers were tested on
the Italian Syntactic-Semantic Treebank (Montemagni et al. 2003), an improvement
seems to have been achieved, although it is not straightforward to compare
evaluation metrics for constituency and dependency parsing. A more relevant
comparison is the rule-based parser of Lesmo et al. (2002), which uses the TUT
dependency type set and which has been reported to achieve a labeled attachment
score of 76.65% when evaluated during the development of the treebank. Since this
is within a percentage point of the results reported in this article and the evaluation
is based on the same kind of data, it seems clear that MaltParser achieves highly
competitive results for Italian.

4.2.10 Turkish

The Turkish Treebank (Oflazer et al. 2003), created by Metu and Sabanci Universities
is used in the experiments for Turkish. This treebank is composed of 5635 sentences,
annotated with dependency structures, of which 7.2% are non-projective (not
counting punctuation that is not connected to a head). As can be seen from table 1,
even though the number of sentences in the Turkish Treebank is in the same range
as for Danish, Swedish and Bulgarian, the number of words is considerably smaller
(54k as opposed to 70-100k for the other treebanks). This significant difference
arises from the very rich morphological structure of the language due to which a
word may sometimes correspond to a whole sentence in another language.

As a result of their agglutinative morphology, Turkish words can change their
main part-of-speech after the concatenation of multiple suffixes. This structure is
represented in the treebank by dividing words into inflectional groups (IG). The
root and derived forms of a word are represented by different IGs separated from
each other by derivational boundaries (DB). Each IG is annotated with its own
part-of-speech and inflectional features, as illustrated in the following example:!”

okulunuzdaydi
(he was at your school)
okulunuzda DB ydi
okul+Noun+A3sg+P2pl+Loc DB  +Verb+Zero+Past+A3sg

1G 1G,

The part-of-speech of the stem of the word okulunuzdayd: is a noun, from which a
verb is derived in a separate IG. In the treebank, dependencies hold between specific
IGs of the dependent and head word.

For the parsing experiments, we have concatenated IGs into word forms to
get a word-based tokenization and used a reduced version of the part-of-speech
tagset given by the treebank, very similar to the reduced tagset used in the parser
of Eryigit and Oflazer (2006). For each word, we use the part-of-speech of each
IG and in addition include the case and possessive information if the stem is a
noun or pronoun. Using this approach, the tag of the word okulunuzdaydi becomes

17 A3sg = 3sg number agreement, P2pl = 2pl possessive agreement, Loc = locative case.
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Table 13. Attachment score (ASy ), precision (P), recall (R) and F measure per
dependency type for Turkish (mean of 10-fold cross-validation, frequency counts
rounded to whole integers )

Dependency Type n ASy P R F
ABLATIVE.ADJUNCT 52 82.8 58.8 54.7 56.7
APPOSITION 190 40.6 8.5 5.9 7.0
CLASSIFIER 205 87.0 72.8 70.4 71.6
COLLOCATION 5 41.2 25.0 5.9 9.5
COORDINATION 81 53.6 56.0 48.6 52.0
DATIVE.ADJUNCT 136 86.8 55.0 54.9 54.9
DETERMINER 195 91.1 83.7 85.8 84.7
EQU.ADJUNCT 2 62.5 0.0 0.0 -
ETOL 1 70.0 0.0 0.0 -
FOCUS.PARTICLE 2 78.3 0.0 0.0 -
INSTRUMENTAL.ADJUNCT 27 71.6 34.7 18.8 244
INTENSIFIER 90 939 82.9 86.0 84.4
LOCATIVE.ADJUNCT 114 73.0 59.5 58.1 58.8
MODIFIER 1168 76.5 68.7 68.2 68.4
NEGATIVE.PARTICLE 16 90.0 89.6 80.6 84.9
OBJECT 796 88.3 68.6 69.4 69.0
POSSESSOR 152 80.0 81.7 69.9 75.3
QUESTION.PARTICLE 29 93.8 85.9 80.2 83.0
RELATIVIZER 8 91.8 54.5 49.4 51.8
ROOT 2 0.0 0.0 0.0 -
SENTENCE.MODIFIER 59 52.4 33.8 47.6 39.5
SENTENCE 725 91.2 84.4 89.2 86.7
SUBJECT 448 72.0 50.7 50.8 50.7
VOCATIVE 24 51.0 204 19.1 19.7
Total 4357 81.6 69.0 69.0 69.0

Noun+P2pl+Loc+Verb. Even after this reduction, the tagset contains 484 distinct
tags, making it by far the biggest tagset used in the experiments.

The best performing model for Turkish omits five of the features of the standard
model, three part-of-speech features (p(o1), p(12), p(r3)) and two lexical features
(w(h(ag)), w(t1)). In addition, the stem of a word is used as its word form in lexical
features. This leads to an accuracy of ASy = 81.6% and AS; = 69.0%. These are
the mean results obtained after 10-fold cross-validation.

Table 13 gives unlabeled attachment scores (ASy), labeled precision (P), recall
(R), and F measure (F) for individual dependency types. First of all, we see that
types with a frequency below 5 in the test set have very low labeled accuracy, which
is consistent with results reported for other languages earlier. Secondly, we may
note that the frequency of tokens analyzed as roots (ROOT) is very low, which is
a consequence of the fact that punctuation tokens are excluded in evaluation, since
final punctuation is generally treated as the root node of a sentence in the Turkish
Treebank.!® Therefore, the closest correspondent to ROOT for other languages
is SENTENCE, which is the type assigned to a token dependent on the final
punctuation token (normally the final verb of the sentence) and which has a very

8 The few roots that do occur are unconnected words that give rise to non-projective
dependency structures.
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high accuracy, on a par with the ROOT type for most other languages. Finally,
there is a clear tendency that dependency types with high accuracy (INTENSI-
FIER, QUESTION.PARTICLE, RELATIVIZER, SENTENCE, DETERMINER,
NEGATIVE.PARTICLE) are types that are generally adjacent to their head,
whereas types with lower accuracy (COORDINATION, SENTENCE.MODIFIER,
APPOSITION, COLLOCATION, VOCATIVE) are types that are either more
distant or hard to differentiate from other types.

The only comparable results for Turkish are for the unlexicalized dependency
parser of Eryigit and Oflazer (2006). These results are based on a selected subset
of the treebank sentences containing only projective dependencies with the heads
residing on the right side of the dependents and the main evaluation metrics are
based on IGs rather than words, but word-based scores are presented for the purpose
of comparison with a top score of ASy = 81.2%. Applying MaltParser with the
best feature model to the same subset of the treebank resulted in an unlabeled
attachment score of 84.0%, which is a substantial improvement.!’

4.3 Discussion

Although MaltParser achieves an unlabeled dependency accuracy above 80% for all
languages, there is also a considerable range of variation, which seems to correlate
fairly well with the linguistic dimensions of morphological richness and word order
flexibility, exemplified by high accuracy for English and lower accuracy for Czech,
which represent extreme positions on these scales. Given that English and Czech are
also the languages with the largest data sets, the linguistic properties seem to be more
important than the amount of data available. Another influencing factor is the level
of detail of the dependency annotation, as given by the number of dependency types
used, where Czech has a more fine-grained classification than English. However,
Danish has an even more fine-grained classification but still comes out with higher
parsing accuracy than Czech, despite a much smaller training data set.

If morphological richness and word order flexibility are indeed the most important
factors determining parsing accuracy, the results for German are surprisingly good,
given that German has both richer morphology and freer word order than English.
On the other hand, the results for Chinese are on the low side. This points to another
important factor, namely the complexity of the sentences included in the treebank
data, which can be roughly approximated by considering the mean sentence length in
the sample. Here we see that Chinese has the second highest value of all languages,
while the sentence length for German is at least considerably lower than for English.
At the same time, we have to remember that the number of words per sentence is
not strictly comparable between languages with different morphological properties,
as illustrated especially by the data for Turkish (cf. section 4.2.10).

19 Strictly speaking, the subset used by Eryigit and Oflazer (2006) only contains non-crossing
dependencies, although it does contain punctuation that is not connected to other tokens.
In order to make these graphs projective, the punctuation tokens were attached to the
immediately following word. However, since punctuation is excluded in all evaluation
scores, this nevertheless seems like a fair comparison.
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Comparing individual dependency types across languages is very difficult, given the
diversity in annotation, but a few recurrent patterns are clearly discernible. The first
is that dependencies involving function words generally have the highest accuracy.
The second is that core arguments of the verb often have high unlabeled accuracy
but lower labeled accuracy, with the possible exception of subjects, which have high
labeled accuracy in languages where they are distinguished configurationally. The
third is that the parsing accuracy for coordinate structures tends to be higher if
the dependency analysis treats conjuncts, rather than coordinating conjunctions, as
heads.

Needless to say, a more detailed error analysis will be needed before we can
draw any reliable conclusions about the influence of different factors, so the
tentative conclusions advanced here are best regarded as conjectures to be cor-
roborated or refuted by future research. However, given the fact that unlabeled
dependency accuracy is consistently above 80%, the parsing methodology has
proven to be relatively insensitive to differences in language typology as well as in
annotation schemes. Moreover, respectable results can be obtained also with fairly
limited amounts of data, as illustrated in particular by the results for Italian and
Turkish.

Finally, we note that MaltParser achieves state-of-the-art performance for most
of the languages investigated in this article, although the possibility of comparison
differs widely between languages. For English, Chinese, Czech and Dutch, parsing
accuracy does not quite reach the highest level, but the difference is never more than
about 5% (slightly more for Dutch).?

5 Conclusion

We have presented MaltParser, a data-driven system for dependency parsing that
can be used to construct syntactic parsers for research purposes or for practical
language technology applications. Experimental evaluation using data from ten
different languages shows that MaltParser generally achieves good parsing accuracy
without language-specific enhancements and with fairly limited amounts of training
data. Unlabeled dependency accuracy is consistently above 80% and the best results
are normally within a 5% margin from the best performing parsers, where such
comparisons are possible. MaltParser is freely available for research and educational
purposes.
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This paper gives an overview of the work of McDonald et al. (McDonald et al. 2005a, 2005b;
McDonald and Pereira 2006; McDonald et al. 2006) on global inference and learning algorithms
for data-driven dependency parsing. Further details can be found in the thesis of McDonald
(McDonald 2006). This paper is primarily intended for the audience of the ESSLLI 2007 course
on data-driven dependency parsing.

1. Introduction

In this work, we study both learning and inference algorithms for producing dependency graph
representations of natural language syntactic structure. Dependency graphs represent words and
their relationship to syntactic modifiers through directed edges. For example, Figure 1 shows a
dependency graph for the sentence, John hit the ball with the bat.

Dependency grammars and dependency parsing have a long history in both the formal lin-
guistic and computational linguistic communities. A common starting point on modern linguistic
theories of dependency representations is that of Tesniére (Tesniere 1959) which was followed by
a number of studies on dependency representations and their relationships to other formalisms,
most notably by Hays (Hays 1964) and Gaifman (Gaifman 1965). However, it would be another
quarter of a century before dependency representations of sentences became wide spread in the
computational linguistics community. Perhaps the two most well known works in this respect are
Hudson’s Word Grammar (Hudson 1984) and Mel’¢uk’s Meaning Text Theory (Melguk 1988).
Since then, a variety of computational syntactic dependency formalisms have been proposed. No-
table amongst them is the work on constraint based dependency parsing (Maruyama 1990), which
treats the parsing of dependency graphs as a constraint satisfaction problem. This framework has
been extended theoretically (Maruyama 1990; Harper and Helzerman 1995) as well as applied
in practical evaluations (Foth et al. 2000; Wang and Harper 2004), providing some of the best
empirical support for any grammar-based dependency formalism. Another important framework
is Functional Generative Description (Sgall et al. 1986), which provides the core theoretical
foundation for the Prague Dependency Treebank (B6hmova et al. 2003) — the largest dependency
treebank currently in use. Work on context-sensitive formalisms such as those in the TAG family
(Joshi 1985) or CCGs (Steedman 2000) can also be viewed as producing dependency graphs
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An example dependency graph.

root  John saw a dog yesterday which was a Yorkshire  Terrier

Figure2
A non-projective dependency graph.

of sentences through their derivation trees. However, these trees typically represent semantic
dependencies, not syntactic ones.

The example dependency graph in Figure 1 belongs to the special class of graphs that only
contain projective (also known as nested or non-crossing) edges. Assuming a unique root as
the left most word in the sentence, a projective graph is one that can be written with all words
in a predefined linear order and all edges drawn on the plane above the sentence, with no edge
crossing another. Figure 1 shows this construction for the example sentence. Equivalently, we can
say a dependency graph is projective if and only if an edge from word w to word « implies that
there exists a directed path in the graph from w to every word between w and « in the sentence.
Due to English’s rigid word order, projective graphs are sufficient to analyze most English
sentences. In fact, a large source of English dependencies is automatically generated from the
Penn Treebank (Marcus et al. 1993) and is by construction exclusively projective (Yamada
and Matsumoto 2003). However, there are certain examples in which a non-projective graph is
preferable. Consider the sentence, John saw a dog yesterday which was a Yorkshire Terrier. Here
the relative clause which was a Yorkshire Terrier and the noun it modifies (the dog) are separated
by a temporal modifier of the main verb. There is no way to draw the dependency graph for this
sentence in the plane with no crossing edges, as illustrated in Figure 2. In languages with flexible
word order, such as Czech, Dutch and German, non-projective dependencies are more frequent.
In general, rich inflection systems reduce the demands on word order for expressing grammatical
relations, leading to non-projective dependencies that we need to represent and parse efficiently.

Formally, a dependency structure for a given sentence is a directed graph originating out of
a unique and artificially inserted root node, which we always insert as the left most word. In the
most common case, every valid dependency graph has the following properties,

1. It is weakly connected (in the directed sense).

2. Each word has exactly one incoming edge in the graph (except the root, which has
no incoming edge).

3. There are no cycles.
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4, If there are n words in the sentence (including root), then the graph has exactly
n — 1 edges.

It is easy to show that 1 and 2 imply 3, and that 2 implies 4. In particular, a dependency
graph that satisfies these constraints must be a tree. Thus we will say that dependency graphs
satisfying these properties satisfy the tree constraint, and call such graphs dependency trees. In
this work we will only address the problem of parsing dependency graphs that are trees, which is
a common constraint (Nivre 2005). McDonald and Pereira (McDonald and Pereira 2006) show
how to extend the algorithms presented here to non-tree dependency graphs.

As mentioned before, directed edges in a dependency graph represent words and their
syntactic modifiers. The word constitutes the head of the edge and the argument the modifier.
This relationship is often called the head-modifier or the governor-dependent relationship. The
head is also sometimes called the parent and the modifier is also sometimes called the child
or argument. Dependency structures can be labeled to indicate grammatical, syntactic and even
semantic properties of the head-modifier relationships in the graph. For instance, we can add
syntactic/grammatical function labels to the structure in Figure 1 to produce the graph in Figure 3.

In many cases the head-modifier relationship is easy to define. For instance, it seems clear
that both subjects and objects are modifying a verb (or sets of verbs). Similarly, adjectives
and adverbials play the obvious role of modifier. However, what about prepositions or relative
clauses? Does the preposition/complementizer govern the noun/verb? Vice-versa? The distinc-
tion between various levels of dependency representation can be beneficial here. For example,
Meaning Text Theory argues that there are essentially three layers of representation, the mor-
phological, syntactic and semantic. Similarly, the Functional Generative Description framework
assumes both syntactic and semantic layers. As a result, at the syntactic level, the preposition
would govern the noun since it is the preposition that determines the syntactic category of the
relationship with the verb. However, at the semantic level the opposite is true since it is the noun
that is filling the semantic template of the verb.

Recently, there has been a surge of interest in producing computational models for depen-
dency parsing. Relative to phrase-structure formalisms such as CFGs, TAG, LTAG, or CCGs,
dependencies can be considered a light-weight representation. As a result, they are much simpler
to represent and analyze computationally. However, dependency graphs still encode much of
the predicate-argument information relevant to many NLP problems and have been employed
in a variety of applications such as relation extraction (Culotta and Sorensen 2004), machine
translation (Ding and Palmer 2005), synonym generation (Shinyama et al. 2002) and lexical
resource augmentation (Snow et al. 2004).
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Another advantage of dependency parsers is the existence of numerous large annotated
resources. The Prague Dependency Treebank (Haji¢ 1998; Hajic et al. 2001) contains tens of
thousands of human annotated dependency representations for Czech. The Nordic Treebank
Network? is a group of European researchers that have developed many tools for dependency
parsing including treebanks for Danish (Kromann 2003) and Swedish (Einarsson 1976). There
are also Turkish (Oflazer et al. 2003) and Arabic (Haji¢ et al. 2004) dependency treebanks
available. Recently, the organizers of the shared-task at CoNLL 2006 (Buchholz et al. 2006)
standardized data sets for 13 languages: Arabic, Bulgarian, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish and Turkish (Hajic et al. 2004; Simov
et al. 2005; Simov and Osenova 2003; Chen et al. 2003; Béhmova et al. 2003; Kromann 2003;
van der Beek et al. 2002; Brants et al. 2002; Kawata and Bartels 2000; Afonso et al. 2002;
DZeroski et al. 2006; Civit Torruella and Marti Antonin 2002; Nilsson et al. 2005; Oflazer et al.
2003; Atalay et al. 2003). Furthermore, most phrase-structure treebanks typically have common
tools for converting them into dependency treebanks including both the English and Chinese
Penn treebanks (Marcus et al. 1993; Xue et al. 2004).

1.1 Data-Driven Dependency Parsing

In this work we focus on parsing models that discriminate between better and worse parses for
a given input sentence®. We assume no underlying grammar that generates the language. In fact,
one can think of our parser using a grammar that accepts the set of all possible strings. The goal of
parsing will be to search the set of all valid structures and return the structure with highest score
—itis given that the sentence under consideration should be accepted. The Collins parser (Collins
1999) is a well known model of this form. It searches the entire space of phrase-structures for a
given sentence without the use of an underlying grammar. For dependency parsing, this translates
to searching the space of projective or non-projective trees and returning the most likely one.
This form of parsing is often referred to as data-driven parsing, since parsing decisions are made
based on models trained on annotated data alone and without an underlying grammar. Note also
that this relieves us of making any of the difficult decisions about the nature of the head-modifier
relationship since we assume this information is contained implicitly in the annotated data.

The data-driven parsing framework is graphically displayed in Figure 4. First, a system
must define a learning algorithm that takes as input the training data, which is a parsed set of
sentences, and outputs a parsing model. This process of a learning algorithm producing a parsing
model from a training set is usually called training or learning. The parsing model (sometimes
simply called the model) contains the parameter settings as well as any feature specifications. The
learning algorithm is generic and will produce different parsing models when different training
data is given as input. In fact, we will show empirically that the learning algorithms presented
here are language independent. That is, if given training data in English, the learning algorithm
will produce an accurate English parsing model. Similarly, if given training data in Spanish, it
will produce an accurate Spanish parsing model.

The learned parsing model is part of the parser. The parser consists of both the model and
an inference algorithm (or parsing algorithm), which specifies how to use the model for parsing.
That is, when a new sentence « is given to the parser, the inference algorithm uses the parameter
specifications in the model to produce a syntactic representation y. For many formalisms, the
parsing model defines the inference algorithm. For example, if the model is a Probabilistic

1 http://w3.msi.vxu.se/ nivre/research/nt.html
2 In fact the parsing models discussed in this work really provide a mechanism for ranking parses.
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Outline of generic syntactic parsing framework.

Context Free Grammar, then the inference algorithm will most likely by CKY (Younger 1967)
or Earley’s (Early 1968), but in principle this is not necessarily true.

1.2 Previous Work

Most recent work on producing parsers from annotated data has focused on models and learning
algorithms for phrase-structure parsing. The best phrase-structure parsing models represent
generatively the joint probability P(x,y) of sentence x having the structure y (Charniak 2000;
Collins 1999). These models are easy to train because all of their parameters are simple functions
of counts of parsing events in the training set. However, they achieve that simplicity by making
strong statistical independence assumptions, and training does not optimize a criterion directly
related to parsing accuracy. Therefore, we might expect better accuracies from discriminatively
trained models that set their parameters typically by minimizing the conditional log-loss or error
rate of the model on the training data. Furthermore, discriminative models can easily handle mil-
lions of rich dependent features necessary to successfully disambiguate many natural language
phenomena — a feat that is computationally infeasible in generative models. The advantages of
discriminative learning have been exploited before, most notably in information extraction where
discriminative models represent the standard for both entity extraction (Tjong Kim Sang and
De Meulder 2003) and relation extraction (Zelenko et al. 2003). The obvious question the parsing
community has asked is, can the benefits of discriminative learning be applied to parsing?

An early work on discriminative parsing is the local decision maximum entropy model of
Ratnaparkhi (Ratnaparkhi 1999), which is trained to maximize the conditional likelihood of each
parsing decision within a shift-reduced parsing algorithm. This system performed nearly as well
as generative models of the same vintage even though it scores individual parsing decisions in
isolation and as a result it may suffer from the label bias problem (Lafferty et al. 2001). A similar
system was proposed by Henderson (Henderson 2003) that was trained using neural networks.

Only recently has any work been done on discriminatively trained parsing models that score
entire structures y for a given sentence x rather than just individual parsing decisions (Clark
and Curran 2004; Collins and Roark 2004; Riezler et al. 2002; Taskar et al. 2004). The most
likely reason for this is that discriminative training requires repeatedly reparsing the training
corpus with the current model to determine the parameter updates that will improve the training
criterion. This general description applies equally for extensions to parsing of standard dis-
criminative training techniques such as maximum entropy (Berger et al. 1996), the perceptron
algorithm (Rosenblatt 1958), or support vector machines (Boser et al. 1992), which we call here
linear parsing models because they all score a parse y for a sentence x as a weighted sum of parse
features, w - f(x, y). The reparsing cost is already quite high for simple context-free models with
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O(n?) parsing complexity, but it becomes prohibitive for lexicalized grammars (Collins 1999)
with O(n®) parsing complexity. The prohibitive cost of training a global discriminative phrase-
structure parser results in most systems employing aggressive pruning and other heuristics to
make training tractable. Consequently, these systems have failed to convincingly outperform the
standard generative parsers of Charniak (Charniak 2000) and Collins (Collins 1999).

Another line of discriminative parsing research is parse re-ranking, which attempts to
alleviate any computational problems by taking the k-best outputs from a generative parsing
model and training a post processing ranker to distinguish the correct parse from all others. The
advantage of re-ranking is that it reduces parsing to a smaller multi-class classification problem
that allows the classifier to condition on rich features spanning the entire structure of each parse.
This approach has been applied to both the Collins parser (Collins and Duffy 2002) and the
Charniak parser (Charniak and Johnson 2005) and typically results in a 10% relative reduction
in error.

For data-driven dependency parsing, Eisner (Eisner 1996) gave a generative model with
a cubic parsing algorithm based on a graph factorization that very much inspired the core
parsing algorithms for this work. Yamada and Matsumoto (Yamada and Matsumoto 2003)
trained support vector machines (SVM) to make parsing decisions in a shift-reduce dependency
parser for English. As in Ratnaparkhi’s parser (Ratnaparkhi 1999), the classifiers are trained on
individual decisions rather than on the overall quality of the parse. Nivre and Scholz (Nivre and
Scholz 2004) developed a memory-based learning model combined with a linear-time parser
to approximately search the space of possible parses. A significant amount of work has been
done by the researchers at Charles University led by Jan Haji¢ and Eva HajiGova. In addition to
developing the Prague Dependency Treebank (Haji¢ 1998), there has also been extensive research
on parsing Czech at that institution (Collins et al. 1999; Ribarov 2004; Zeman 2004).

One interesting class of dependency parsers are those that provide labels on edges. Two
well known parsers in this class are the link-grammar system of Sleator and Temperly (Sleator
and Temperley 1993) and the system of Lin (Lin 1998). Nivre and Scholz (Nivre and Scholz
2004) provide two systems, one a pure dependency parser and the other a labeled model that
labels edges with syntactic categories. Wang and Harper (Wang and Harper 2004) provide a
rich dependency model with complex edge labels containing an abundant amount of lexical
and syntactic information drawn from a treebank. Though we focus primarily on unlabeled
dependency graphs, we also describe simple extensions to our models that allow for the inclusion
of labels.

Previous attempts at broad coverage dependency parsing have primarily dealt with projective
constructions. In particular, the supervised approaches of Yamada and Matsumoto (Yamada and
Matsumoto 2003) and Nivre and Scholz (Nivre and Scholz 2004) have provided the previous best
results for projective dependency parsing. Another source of dependency parsers are lexicalized
phrase-structure parsers with the ability to output dependency information (Charniak 2000;
Collins 1999; Yamada and Matsumoto 2003). These systems are based on finding phrase struc-
ture through nested chart parsing algorithms and cannot model non-projective edges tractably.
However, Yamada and Matsumoto (Yamada and Matsumoto 2003) showed that these models are
still very powerful since they consider much more information when making decisions then pure
dependency parsers.

For non-projective dependency parsing, tractable inference algorithms have been given by
Tapanainen and Jarvinen (Tapanainen and Jarvinen 1997) and Kahane et al. (Kahane et al. 1998).
Nivre and Nilsson (Nivre and Nilsson 2005) presented a broad-coverage parsing model that
allows for the introduction of non-projective edges into dependency trees through learned edge
transformations within their memory-based parser. They test this system on Czech and show an
improvement over a pure projective parser. Another broad coverage non-projective parser is that
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of Wang and Harper (Wang and Harper 2004) for English, which presents very good results using
a constraint dependency grammar framework that is rich in lexical and syntactic information. One
aspect of previous attempts at non-projective parsing is that inference algorithms are typically
approximate. A commonly cited result is the proof by Neuhaus and Bréker (Neuhaus and Boker
1997) that non-projective parsing is NP-hard. However, this result assumes the existence of a
particular grammar generating the language. In this study we are working within the data driven
framework and we will show that this theoretical result does not apply.

The present work is closely related to that of Hirakawa (Hirakawa 2001) who, like us,
relates the problem of dependency parsing to finding spanning trees for Japanese text. However,
that parsing algorithm uses branch and bound techniques due to non-local parsing constraints
and is still in the worst case exponential (though in small scale experiments seems tractable).
Furthermore, no justification was provided for the empirical adequacy of equating spanning trees
with dependency trees.

The closely related research of Ribarov (Ribarov 2004) was developed independently of this
work. In that work, Ribarov also equates the problem of dependency parsing to finding maximum
spanning trees in directed graphs. Furthermore, the learning model employed is the perceptron
algorithm (Rosenblatt 1958), which is a learning algorithm related to the framework presented in
Section 2. However, Ribarov’s empirical evaluation on the Prague Dependency Treebank (Hajic
1998) results in an accuracy well below the state-of-the-art. This is most likely due to a very
impoverished feature representation that focuses primarily on aspects of the complex Czech
morphology and does not consider lexical or contextual information. We also generalize the
dependency parsing as maximum spanning tree framework and consider trees with larger (and
possibly intractable) feature contexts as well as apply the resulting parser to new domains and in
real world applications.

2. Large-Margin Online Learning

In this section we present the learning algorithms that we will use for the rest of this work. One
crucial property of these learning algorithms is that they are inference based, that is, to create
trained models they only require the ability to find the highest scoring output given an input.
This will be exploited throughout this work.

2.1 Structured Classification

Structured classification is a subfield of machine learning that develops theory and algorithms
for learning how to label inputs with non-atomic outputs such as sequences and trees. After
the introduction of conditional random fields (CRFs) (Lafferty et al. 2001), several researchers
developed margin-based learning alternatives, in particular maximum margin Markov networks
(M3Ns) (Taskar et al. 2003) and the related methods of Tsochantaridis et al. (Tsochantaridis et
al. 2004). These algorithms have proven successful in several real world applications including
sequential classification (McCallum 2003; McDonald and Pereira 2005; Sha and Pereira 2003;
Taskar et al. 2003), image labeling (He et al. 2004), natural language parsing (Taskar et al. 2004;
Tsochantaridis et al. 2004) and Web page classification (Taskar et al. 2003). All of these methods
are in theory batch learning algorithms, in which the training objective is optimized with respect
to all training instances simultaneously. In practice, however, the large-margin methods are often
adapted to optimize with respect to a small number of instances at a time in order to handle large
training sets.

This work focuses on purely online learning techniques. Unlike batch algorithms, online
algorithms consider only one training instance at a time when optimizing parameters. This
restriction to single-instance optimization might be seen as a weakness, since the algorithm uses
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less information about the objective function and constraints than batch algorithms. However,
we will argue that this potential weakness is balanced by the simplicity of online learning,
which allows for more streamlined training methods. We focus here on variants of the perceptron
algorithm (Rosenblatt 1958), which inherit its conceptual and mathematical simplicity and scale
up to large problems much better than batch algorithms.

Online learning with perceptron-style algorithms has recently gained popularity due to
the work of Collins (Collins 2002), who uses an approximation to the voted perceptron algo-
rithm (Freund and Schapire 1999), called here the averaged perceptron algorithm, for sequential
classification problems. This method has since been successfully adapted to parsing (Collins and
Roark 2004), language modeling (Roark et al. 2004) and more recently word alignment (Moore
2005). Perceptron-based approaches have gained a wide acceptance since they reduce learning
to inference and they routinely provide state-of-the-art performance.

One problem with the perceptron algorithm is that it does not optimize any notion of
classification margin, which is widely accepted to reduce generalization error (Boser et al. 1992).
As a result, ad-hoc approximations such as parameter averaging are required. Here, we propose
a large-margin online algorithm that generalizes the multi-class classification algorithm MIRA
(Margin Infused Relaxed Algorithm (Crammer et al. 2003; Crammer and Singer 2003; Crammer
et al. 2006)) to structured outputs, which in essence is a large-margin perceptron variant. The
generalization is achieved by using k-best structural decoding to approximate the large-margin
updates of MIRA.

2.2 Online Learning

First, we define a linear score function for input/output pairs,

S(way) =W f(way)

where f(x,y) is a high dimensional feature representation of input & and output y and w is a
corresponding weight vector. The goal will be to learn w so that correct outputs are given a high
score and incorrect outputs a low score. As usual for supervised learning, we assume a training
set T = {(@,y:) };, consisting of pairs of an input z; and its correct output y;. Though these
algorithms work for a variety of outputs, we focus on the case when the output space is the set
of dependency parses for a given input sentence .

In this work we focus on online-learning algorithms that are instances of the algorithm
schema in Figure 5. A single training instance is examined at each iteration, and the weight vector
is updated by an algorithm-specific rule. The auxiliary vector v accumulates the successive values
of of w, so that the final weight vector is the average of the weight vectors after each iteration.
This averaging effect has been shown to help reduce overfitting (Collins 2002).

In what follows, parses(x) denotes the set of possible dependency parses for sentence x,
and besty (z; w) C parses(x) denotes the set of k£ highest scoring parses relative to the weight
vector w.

2.3 Margin Infused Relaxed Algorithm (MIRA)

Crammer and Singer (Crammer and Singer 2001) present a natural approach to large-margin
multi-class classification, which was later extended by Taskar et al. (Taskar et al. 2003) to
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Training data: 7 = {(x¢, y¢)},

2.forn:1..N

3. fort:1.T

4, w1 = update w(®) according to instance (x;, ¥:)
5. v =v 4wt

6. t=1+4+1

T.W=V/(N=*T)

Figure5

Generic online learning algorithm.

structured classification:

min ||w||
st. s(z,y) —s(z,y') > Ly, y')
V(z,y) € T, y' € parses(x)

where L(y,v') is a real-valued loss for the parse ¢’ relative to the correct parse y. Informally,
this minimizes the norm of the weight vector subject to margin constraints that keep the score
of the correct parse above the score of each incorrect one by an amount given by the loss of the
incorrect parse.

The Margin Infused Relaxed Algorithm (MIRA) (Crammer et al. 2003; Crammer and Singer
2003; Crammer et al. 2006) employs this optimization directly within the online framework. On
each update, MIRA attempts to keep the new weight vector as close as possible to the old weight
vector, subject to correctly parsing the instance under consideration with a margin given by the
loss of the incorrect parses. This can be formalized by substituting the following update into line
4 of the generic online algorithm from Figure 5,

WO+ = arg miny g [w* — w |
such that s(x;, y¢) — s(x¢,y') > L(y:,y'), with respect to w* (@)
Vy' € parses(x:)

This update attempts to minimize the change made to the weight vector subject to the set of
margin constraints for the instance under consideration. This quadratic programming problem
(QP) can be solved using Hildreth’s algorithm (Censor and Zenios 1997). Crammer and Singer
(Crammer and Singer 2003) and Crammer et al. (Crammer et al. 2003, 2006) provide an analysis
of both the online generalization error and convergence properties of MIRA.

For the dependency parsing problem, we defined the loss of a graph to be the number of
words with incorrect incoming edges relative to the correct parse. This is closely related to the
Hamming loss that is often used for sequences (Taskar et al. 2003). For instance, consider the
correct graph in Figure 1 versus the incorrect one in Figure 6. The loss of the incorrect graph
relative to the correct one is 2 since with and bat are both incorrectly labeled as modifiers of ball.
Note that this definition assumes dependency graphs are always trees. This is just one possible
definition of the loss. Other possibilities are the 0-1 loss (Taskar 2004) or another more linguis-
tically motivated loss that penalizes some errors (say conjunction and preposition dependencies)
over others. We use Hamming loss primarily since standard evaluation of dependency parsers is
based on the percentage of words that modify the correct head in the graph.

To use MIRA for structured classification, we follow the common method of equating
structure prediction to multi-class classification, where each structure is a possible class for
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Figure6
An example incorrect dependency parse relative to that in Figure 1. The loss of this parse is 2 since with
and bat are incorrectly identified as modifiers of ball.

a sentence. As a result we inherit all the theoretical properties of multi-class classification
algorithms. The primary problem with this view is that for arbitrary inputs there are typically
exponentially many possible classes and thus exponentially many margin constraints, which is
the case for dependency parsing.

One solution for the exponential blow-up in number of classes is to relax the optimization by
using only the margin constraints for the & parses y with the highest scores s(x, y). The resulting
online update (to be inserted in Figure 5, line 4) would then be:

wlHD = argminyx [w* — w@ |
such that s(x¢, y¢) — s(z¢,y') > L(y:, y'), with respect to w*
Vy' € besty (ax; w®)

We call this algorithm &-best MIRA. Throughout the rest of this document all experimental results
for MIRA will be with 1-best MIRA unless stated otherwise.

This formulation of large-margin learning for structured outputs is highly related to that of
Tsochantaridis et al. (Tsochantaridis et al. 2004). In that work a learning algorithm repeatedly
runs inference over training examples to create a growing set of constraints. Parameter optimiza-
tion is then run over all collected constraints. Since this optimization incorporates constraints
from all the instances in training, it is primarily a batch learning algorithm. However, since the
method used to collect the constraints is essentially online, one can consider it a hybrid.

Another solution to the exponetial set of margin contraints is to factor these constraints
relative to the structure of the output to produce an equivalent polynomial sized set of constraints.
Taskar et al. (Taskar et al. 2003, 2004) showed that this can be done for both sequences and
phrase-structure trees, providing that the loss function can also factor relative to the structure of
the output. The advantage of this approach is that it provides an exact solution to the QP given
by Equation (1). Even though the resulting set of constraints is still polynomial, it is typically
linear or squared in the length of the input and can lead to large QP problems. For these reason
we restrict ourselves to k-best MIRA solutions.

3. Dependency Parsing Inference as the Maximum Spanning Tree Problem

In this section we translate the problem of dependency parsing into that of finding maximum
spanning trees for directed graphs. This formulation provides a unified theoretical framework for
discussing the algorithmic properties of inference in projective and non-projective parsing.

In what follows, = z; -- - z,, represents a generic input sentence, and y represents a
generic dependency tree for sentence x. Seeing y as the set of tree edges, we write (i, j) € y if
there is a dependency in y from word «; to word z;.

10
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We follow a common method of factoring the score of a dependency tree as the sum of the
scores of all edges in the tree. In particular, we define the score of an edge to be the dot product
between a high dimensional feature representation of the edge and a weight vector,

Thus one can view the score of a dependency tree y for sentence x as,

s(ey) =w-fl@,y)=w- > 1,5 = Y w-f(i,j)= > s(ij)

(i,4)ey (i,5)ey (i,4)ey

Assuming an appropriate feature representation as well as a weight vector w, dependency parsing
is the task of finding the dependency tree y with highest score for a given sentence x. This is true
for learning as well since we focus on an inference based online learning framework (Section 2).
We should note that the feature representation f(, ) can also include arbitrary features on the
sentence x since it always fixed as input. To indicate this fact, a more appropriate representation
of the feature function would be f(x, %, j). However, for notational simplicity we will just define
f(i,5) = f(x, i, 5).

Consider a directed graph G = (V, E) in which each edge (i, j) (where v;,v; € V) has a
score s(4, 7). Since G is directed, s(-, -) is not symmetric. The maximum spanning tree (MST) of
G is 'Fhe tree y that maximi;es the value E(i’_j)ey s(i,j_), s_uch that (_i,j) €eE anq every vertex
in V' is used in the construction of y. The maximum projective spanning tree of G is constructed
similarly except that it can only contain projective edges relative to some linear ordering on the
vertices of G. The MST problem for directed graphs is also known as the r-arborescence or
maximum branching problem (Tarjan 1977).

For each sentence & we can define a directed graph G = (Ve., E.) where

Ve = {mg =root,xq,...,7,}
Ey = {(7’7]) PTG 75 Tj,T; € Vw;-'lf'j eV — rOOt}

That is, G, is a graph where all the words and the dummy root symbol are vertices and there is a
directed edge between every pair of words and from the root symbol to every word. It is clear that
dependency trees for 2 and spanning trees for G, coincide. By definition, a spanning tree of G is
a sub-graph G’ with nodes V' = V and edges E’ C E, such that G’ is weakly connected and all
the nodes in V' have an in-degree of exactly 1 except the unique root node with in-degree 0. This
definition is equivalent to being a dependency graph satisfying the tree constraint (Section 1).
Hence, finding the (projective) dependency tree of highest score is equivalent to finding the
maximum (projective) spanning tree in G, rooted at the artificial root. Thus by factoring the
score of the tree into the sum of edge scores we have made dependency parsing equivalent with
finding maximum spanning trees.

Throughout this work we will refer to this particular spanning tree formulation as the first-
order spanning tree problem (or first-order dependency parsing problem). This is because the
score factors as a sum of individual edge scores. Of course, we can factor the score of the tree
any way we wish, though not all factorizations lead to efficient parsing algorithms.

In the analysis that follows, we make the assumption that calculating s(i, j) is O(1). In
fact, this is slightly misleading since w and f typically have a dimension in the millions. As
usual, sparse vector representations are used to reduce the calculation to linear in the number of
features that are active for a given edge. We can view this calculation as some form of grammar
constant, which is a common notion for most parsing formalisms. This constant is typically very

11
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Figure?7
Cubic parsing algorithm of Eisner.

small (roughly 100), especially when compared to grammar constants in phrase-based models,
which can be on the order of tens of thousands when extracted from a large treebank.

3.1 Projective Parsing Algorithms

Using a slightly modified version of the CKY (Younger 1967) chart parsing algorithm, it is
possible to generate and represent all projective dependency trees in a forest that is O(n®) in
size and takes O(n®) time to create, which is equivalent to context-free phrase-structure parsing.
However, Eisner (Eisner 1996) made the observation that if one keeps the head of each chart item
to either the left or right periphery of that item, then it is possible to parse in O(n?). The idea
is to parse the left and right dependents of a word independently, and combine them at a later
stage. This removes the need for the additional head indices of the O(n?) algorithm and requires
only two additional binary variables that specify the direction of the item (either gathering left
dependents or gathering right dependents) and whether an item is complete (available to gather
more dependents). Figure 7 illustrates the algorithm. We use r, s and ¢ for the start and end
indices of chart items, and hy and h» for the indices of the heads of chart items. In the first
step, all items are complete, which is represented by each right angle triangle. The algorithm
then creates an incomplete item from the words h; to he with h; as the head of h,. This item
is eventually completed at a later stage. As with normal CKY parsing, larger items are created
from pairs of smaller items in a bottom-up fashion.

It is relatively easy to augment this algorithm so that each chart item also stores the score
of the best possible subtree that gave rise to the item. This augmentation is identical to those
used for the standard CKY algorithms. We must also store back pointers so that it is possible to
reconstruct the best tree from the chart item that spans the entire sentence.

In more detail, let C[s][t][d][c] be a dynamic programming table that stores the score of the
best subtree from position s to position ¢, s < ¢, with direction d and complete value ¢. The
variable d € {+, —} indicates the direction of the subtree (gathering left or right dependents).
If d =« then t must be the head of the subtree and if d =— then s is the head. The variable ¢ €
{0,1} indicates if a subtree is complete (¢ = 1, no more dependents) or incomplete (¢ = 0, needs
to be completed). For instance, C[s][t][«][1] would be the score of the best subtree represented
by the item,

/]
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Initialization: C[s][s][d][c] = 0.0 Vs,d,c

fork:1.n
fors:1..n
t=s+k

if ¢ > n then break

% First: create incomplete items
C[s]t][«][0] = maxs<r<e (Cls]lrl[=][1] + Clr + 1][H][«][1] + s(t,5)) ()
C[s][t][=][0] = max,<, < (C[s]lr][=][1] + Clr + 1][t][«-][1] + s(s, 1))

% Second: create complete items
Cls][t][«][1] = maxs<,<; (C[s][r][«][1] + C[r][¢][«-][0])
Cls]ltl[=1[1] = max;<,<; (C[s][r][=][0] + C[r][t][=]1])

end for
end for

Figure8
Pseudo-code for bottom-up Eisner cubic parsing algorithm.

and C[s][t][—][0] for the following item,

™

S t

The Eisner algorithm fills in the dynamic programming table bottom-up just like the CKY parsing
algorithm (Younger 1967) by finding optimal subtrees for substrings of increasing increasing
length. Pseudo code for filling up the dynamic programming table is in Figure 8.

Consider the line in Figure 8 indicated by (*). This says that to find the best score for an

incomplete left subtree

S t

we need to find the index s < r < ¢ that leads to the best possible score through joining two

complete subtrees,
s r r+l ¢

The score of joining these two complete subtrees is the score of these subtrees plus the score
of creating an edge from word z; to word z,. This is guaranteed to be the score of the best
subtree provided the table correctly stores the scores of all smaller subtrees. This is because by
enumerating over all values of r, we are considering all possible combinations.

By forcing a unique root at the left-hand side of the sentence, the score of the best tree for
the entire sentence is C[1][n][—][1]. This can be shown easily by structural induction using the
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Chu-Liu-Edmonds(G, s)
Graph G = (V, E)
Edge weight function s : E — R

contract(G = (V, E), C, 5)
1.  LetG¢ bethe subgraph of G excluding nodesin C'

. . 2. Add anode ¢ to G representin cleC
é. Il:etg:{((wv,ﬁ):zev,m = argmaxy 5(', @)} 3 ForzerC-grz(w’,x)ge%
- Gy =(V, : N )
3. If Gy hasnocycles, thenitisan MST: return G py Add edge(c,f) to G with ,
4. Otherwise, find acycle C' in Gas "fa_(c’f”)(— a§g max,co (', )
5 Let< Gcﬁc,ma 3: cgntract(G, C,s) ;”(C—w’;’i Z’(z, 2)
6. Lety = Chu-Liu-Edmonds(G¢, s L i
7. Findyvertazec (Ge-2) 4 FozeV-C:3uec(e,a)eb
such that (CU’,C) € yand ma(zc', C) —z Add edge (z,c) to G¢ with . . .
8. Findedge(z",z) € C ma(z, ¢) = argmax,icq [s(z,2') - s(a(2'),2")]
9. Findaledges(c,z") €y @' = ma(z,c)

s(z, c) = [s(z,2") - s(a(a'),a') + 5(C)]
where a(v) is the predecessor of v in C
and s(C) = 3 yec 5(a(v),v)

10 y=yU{(ma(c,2"),2")}y(c,oM)ey

ucu{(ez)} - {(a" z)}

11.  Removeal vertices and edgesin y containing ¢
12, return y 5. return < Gg, ¢, ma >
Figure9

Chu-Liu-Edmonds algorithm for finding maximum spanning trees in directed graphs.

inductive hypothesis that the chart stores the best score over all strings of smaller length. A quick
look at the pseudo-code shows that the run-time of the Eisner algorithm is O(n?).

For the maximum projective spanning tree problem, it is easy to show that the Eisner
dependency parsing algorithm is an exact solution if we are given a linear ordering of the vertices
in the graph. Indeed, every projective dependency tree of sentence « is also a projective spanning
tree of the graph G, and vice-versa. Thus, if we can find the maximum projective dependency
tree using the Eisner algorithm, then we can also find the maximum spanning tree. For natural
language dependency tree parsing, the linear ordering on the graph vertices is explicitly given by
the order of the words in the sentence.

In addition to running in O(n?), the Eisner algorithm has the additional benefit that it is
a bottom-up dynamic programming chart parsing algorithm allowing for k-best extensions that
increase complexity by a multiplicative factor of O(klog k) (Huang and Chiang 2005).

3.2 Non-projective Parsing Algorithms

To find the highest scoring non-projective tree we simply search the entire space of spanning trees
with no restrictions. Well known algorithms exist for the less general case of finding spanning
trees in undirected graphs (Cormen et al. 1990), as well as k-best extensions to them (Eppstein
1990). Efficient algorithms for the directed case are less well known, but they exist. We will
use here the Chu-Liu-Edmonds algorithm (Chu and Liu 1965; Edmonds 1967), sketched in
Figure 9 following Georgiadis (Georgiadis 2003). Informally, the algorithm has each vertex in
the graph greedily select the incoming edge with highest weight. If a tree results, it must be
the maximum spanning tree. If not, there must be a cycle. The procedure identifies a cycle and
contracts it into a single vertex and recalculates edge weights going into and out of the cycle.
It can be shown that a maximum spanning tree on the resulting contracted graph is equivalent
to a maximum spanning tree in the original graph (Georgiadis 2003). Hence the algorithm can
recursively call itself on the new graph. Naively, this algorithm runs in O(n?®) time since each
recursive call takes O(n?) to find the highest incoming edge for each word and to contract the
graph. There are at most O(n) recursive calls since we cannot contract the graph more then n
times. However, Tarjan (Tarjan 1977) gives an efficient implementation of the algorithm with
O(n?) time complexity for dense graphs, which is what we need here. These algorithms can be
extended to the k-best case (Camerini et al. 1980) with a run-time of O (kn?).

To find the highest scoring non-projective tree for a sentence, x, we simply construct
the graph G, and run it through the Chu-Liu-Edmonds algorithm. The resulting spanning
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tree is the best non-projective dependency tree. We illustrate this on the simple example =
John saw Mary, with directed graph representation G,

/9

root 10

i 30
i /20 VAN

John __ 30 0 Mary

T

The first step of the algorithm is to find, for each word, the highest scoring incoming
edge

root

YA N\

John __ 30 Mary

If the result of greedily choosing the highest scoring incoming edge to every node results in a
tree, it would have to be a maximum spanning tree. To see this, consider a tree 7' constructed
by greedily choosing the highest scoring incoming edge for every word. Now consider a tree 7"
such that T' # 7" and 7" is the maximum spanning tree. Find edges (¢,j) € T and (i',j) € T’
such that ¢ # i’. We know by the definition of T that the score of (4, 7) is at least as large than
the score of (4', j). So we can simple make the change 7" = T" U {(¢, )} — {(¢',4) } and T" will
be a graph of a least equal weight. If we repeat this process, we will eventually converge to the
tree T and we are always guaranteed that the resulting graph will have a score at least as large as
that of 7". Thus, either 7" could not have been the maximum spanning tree, or both 7" and 7" are
trees of equal weight. Either way, T is a maximum spanning tree.

In the current example there is a cycle, so we will contract it into a single node and
recalculate edge weights according to Figure 9.

— 9

root 40
S,
=7 saw ; 30
-7 Wjs /// \

Mary

S

The new vertex wj, represents the contraction of vertices John and saw. The edge from
w;s to Mary is 30 since that is the highest scoring edge from any vertex in w;s. The edge from
root into wj, is set to 40 since this represents the score of the best spanning tree originating
from root and including the vertices in the cycle represented by w;,. The same leads to the
edge from Mary to w;,. The fundamental property of the Chu-Liu-Edmonds algorithm is that an
MST in this graph can be transformed into an MST in the original graph (Georgiadis 2003). The
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proof of this fact follows from the lemma that, after the greedy step, all the edges of any cycle
must exist in some MST, except a single edge. That single edge is one that must be removed to
break this cycle and satisfy the tree constraint. Knowing this lemma, we can observe that in the
contracted graph, the weight of edges going into the contracted node represent, exactly, the best
score of that edge entering the cycle and breaking it. For example, the edge from root into w is
40 representing that edge entering the node saw and breaking the cycle by removing the single
edge from John to saw.

We recursively call the algorithm on this graph. Note that we need to keep track of the real
endpoints of the edges into and out of w;, for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

—_
root 40
-~
- ——
_-~" _saw ) 30
-~ sz // \
7 - //
(Joh,n//’ Mary
-

~ =

This is a tree and thus the MST of this graph. We now need to go up a level and reconstruct the
graph. The edge from w;, to Mary originally was from the word saw, so we include that edge.
Furthermore, the edge from root to w; represented a tree from root to saw to John, so we include
all those edges to get the final (and correct) MST,

root -
10
saw

-~ ~

.30 30,
John Mary

A possible concern with searching the entire space of spanning trees is that we have not
used language-specific syntactic constraints to guide the search. Many languages that allow non-
projectivity are still primarily projective. By searching all possible non-projective trees, we run
the risk of finding extremely bad trees. Again, we have assumed a data driven approach to parsing
and appeal to the properties of the training data to eliminate such cases.

4. Beyond Edge Factorization

Restricting scores to a single edge in a dependency tree is a very impoverished view of depen-
dency parsing. Yamada and Matsumoto (Yamada and Matsumoto 2003) showed that keeping a
small amount of parsing history was crucial to improving performance for their locally trained
shift-reduce SVM parser. It is reasonable to assume that other parsing models will benefit from
features over previous decisions.

Here we will focus on methods for parsing second-order spanning trees. These models factor
the score of the tree into the sum of adjacent edge pairs. To quantify this, consider the example
from Figure 1, with words indexed: root(0) John(1) hit(2) the(3) ball(4) with(5) the(6) bat(7).
Using a first-order spanning tree formulation, the score of this tree would be,

5(0,2) + s(2,1) + s(2,4) + 5(2,5)
+5(4,3) +5(5,7) + 5(7,6)

However, in our second-order spanning tree model, the score of this tree would be,
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5(0,—,2) + 8(2,—,1) + s(2,—,4) + 5(2,4,5)
+s(4 — 3)+s(5 —,7)+s(7,—,6)

Here we have changed the score function to s(3, &, j), which is the score of creating a pair of
adjacent edges, from word z; to words z;, and ;. For instance, s(2, 4, 5) is the score of creating
athe edges from hit to with and from hit to ball. The score functions are relative to the left or right
of the head and we never score adjacent edges that are on different sides of the head (e.g. s(2, 1,4)
for the adjacent edges from hit to John and ball). This left/right independence assumption is
common and will allow us to define efficient second-order projective parsing algorithms. We let
s(i, —, j) be the score when z; is the first left/right dependent of word z;. For example, s(2, —, 4)
indicates the score of creating a dependency from hit to ball, where ball is the first modifier to
the right of hit. More formally, if the word z;, has the modifiers as shown,

— N T

Ziy . .'L'ij mij+1 . Zi,,
the score factors as follows:

S s(ioy ik, in) + 8(io, —, i)
+ s(io, =, 4j4+1) + Ekm:_lerl 8(i0, ks Tk+1)

A second-order MST is mathematically a richer factorization, since the score function can
just ignore the middle modifier, or sibling, argument and it would be reduced to the standard
first-order model. In fact we will define the second order score to directly incorporate first-
order information, s(i, k, j) = s(i, k, j) + s(i, j). Here the first term includes features over the
pairs of adjacent edges and the second over features of a single edge. It is also important to
note that s(i, k, j) # s(i,4, k). In fact, the order of the two adjacent modifiers is determined
by there relative location in the sentence to the head. The closer modifier is always the first
argument. Furthermore, for features over pairs of edges the relative order of the modifiers is
always incorporated.

The score of a tree for second-order parsing is now,

s(@wy) = Y s(ik,j)

(i.k.j)€y

Which is the sum of adjacent edge scores in y.

Essentially the second-order model allows us to condition on the most recent parsing
decision, i.e. the last dependent picked up by a particular word. This is analogous to the Markov
conditioning of the Charniak parser (Charniak 2000) for phrase-structure parsing.

When moving to this second-order factorization we have introduced the notion of edge
adjacency in a tree. This notion is only meaningful when there is a fixed order on the vertexes in
the graph, as is the case with dependency parsing. It is with respect to this restricted formulation
that we consider maximum spanning tree parsing in this section.

4.1 A Projective Parsing Algorithm
In this section we describe a O(n?) second-order parsing algorithm that works by breaking up
dependency creation in the first-order algorithm into two steps - sibling creation followed by head

attachment. This cubic extension to the second-order case was in the original work of Eisner
(Eisner 1996). Graphically the intuition behind the algorithm is given in Figure 10. The key
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h1 hy h1

ho ho hs3 ho ha hs h3
N .
h1 ho ho [d r+1 hs3 h1 ho ho h3 h1 hs

(A) (B) ©

Figure 10

An extension of the Eisner algorithm to second-order dependency parsing. This figure shows how h;
creates a dependency to hz with the second-order knowledge that the last dependent of h; was h. This is
done through the creation of a sibling item in part (B).

insight is to delay completion of items until all the dependents of the head have been gathered.
This allows for the collection of pairs of sibling dependents in a single stage while maintaining
a cubic time parsing algorithm. We will define a new item type called a sibling type (in addition
to the usual complete and incomplete types).

The algorithm works by defining an almost identical bottom-up dynamic programming
table as the original Eisner algorithm. The only difference is the addition the new sibling type.
Pseudo-code for the algorithm is given in Figure 11. As before, we let C[s][t][d][c] be a dynamic
programming table that stores the score of the best subtree from position s to position ¢, s < t,
with direction d and complete value c. In the second-order case we let ¢ € {0, 1,2} to indicate if
a subtree is complete (¢ = 1, no more dependents), incomplete (¢ = 0, needs to be completed),
or represents sibling subtrees (¢ = 2). Sibling types have no inherent direction, so we will always
assume that when ¢ = 2 then d = null (-). As in the first-order case, the proof of correctness is
done through structural induction. Furthermore, back-pointers can be included to reconstruct the
highest scoring parse and the k-best parses can be found in O(klog(k)n?).

4.2 An Approximate Non-projective Parsing Algorithm

Unfortunately second-order non-projective MST parsing is NP-hard. We prove this fact with a
reduction from 3-dimensional matching.
3DM: Disjoint sets, X, Y, Z each with m distinctelements,andasetT C X x Y x Z. Question:
is there a subset S C T such that S| =m and each v € X UY U Z occurs in exactly one
element of S.
Reduction: Given an instance of 3DM we define a graph in which the vertices are the elements
of X UY U Z as well as an artificial root node. We insert edges from root to all x € X as well
as edges fromall z € X toall y € Y and z € Z. We order the words s.t. the root is on the left
followed by all elements of X, then Y, and finally Z. The order of elements within each set is
unimportant. We then define the second-order score function as follows,

s(root,z,x') =0, Vz,2' € X

s(z,—y)=0,Vee X,yeY

s(z,y,2) =1, V(z,y,2) €T
All other scores are defined to be —oo, including for edges pairs that were not defined in the
original graph.
Theorem: There is a 3D matching iff the second-order MST has a score of m.
Proof: First we observe that no tree can have a score greater than m since that would require
more than m pairs of edges of the form (z, y, z). This can only happen when some z has multiple
y € Y modifiers or multiple z € Z modifiers. But if this were true then we would introduce a
—oo scored edge pair (e.g. s(z,y,y")). Now, if the highest scoring second-order MST has a
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Initialization: C[s][s][d][c] = 0.0 Vs,d,c

fork:1.n
fors:1..n
t=s+k

if ¢ > n then break

% Create Sibling Items
Cls]it][][2] = maxy<r ¢ {Cls][r][=][1] + C[r + 1]E][«][1]}

% First Case: head picks up first modifier
Cls][t][«][0] = C[s][t — 1][=][1] + C[t — 1][#][«][1] + s(%, -, 5)
Cls][t][=1[0] = Cls]ls][=][1] + Cls + 1[E][«][1] + s(s,-,1)

% Second Case: head picks up a pair of modifiers (through a sibling item)
C[s][t][«][0] = max {C[s][t][«-][0], maxs<,<: {C[s]r][-][2] + Clr][t][«-][0] + s(¢,7,5)}}
Cls][t][=1[0] = max {C[s][t][][0], maxs<r<; {C[s][r][2][0] + ClrIEI[-1[2] + s(s, 7, ) }}

% Create complete items
Cls]ltl[«][1] = max,<,<¢ {Cls][r][2][0] + Clr + 1][t][«-][0] + s(t,5)}
Cls]itl[=][1] = max,<p<¢ {Cls][r][2][0] + Clr + 1][t][«-][0] + s(s, %)}

end for
end for

Figurell
Pseudo-code for bottom-up second-order Eisner parsing algorithm.

score of m, that means that every = must have found a unique pair of modifiers y and z; which
represents the 3D matching, since there would be m such triples. Furthermore, y and z could not
match with any other z’ since they can only have one incoming edge in the tree. On the other
hand, if there is a 3DM, then there must be a tree of weight m consisting of second-order edges
(z,y, z) for each element of the matching S. Since no tree can have a weight greater then m, this
must be the highest scoring second-order MST. Thus if we can find the highest scoring second-
order MST in polynomial time, then 3DM would also be solvable. Note that this proof works for
both dependency parsing with the left/right modifier independent assumption and without. Il
Thus, the Chu-Liu-Edmonds algorithm most likely cannot be extended polynomially to han-
dle second-order feature representations. This is an important result, since it shows that even for
data driven parsing, non-projective exact search becomes intractable for any factorization other
than first-order3. To combat this, we will create an approximate algorithm based on the O(n?)
second-order projective parsing algorithm just provided. The approximation will work by first
finding the highest scoring projective parse. It will then rearrange edges in the tree, one at a time,
as long as such rearrangements increase the overall score and do not violate the tree constraint.
We can clearly motivate this approximation by observing that even in non-projective languages
like Czech and Dutch, most trees are primarily projective with just a few non-projective edges
(Nivre and Nilsson 2005). Thus, by starting with the highest scoring projective tree, we are
typically only a small number of transformations away from the highest scoring non-projective

3 Even though the above reduction was for pairwise adjacent edge factorization, it is easy to extend the reduction for
arbitrary constraints over more than one edge.
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2-order-non-proj-approx(z, s)
Sentence € = xg ... %, Lo = root
Weight function s : (i, k,j) = R

1. Lety = 2-order-proj(z,s)
2. while true
3. m=—-00,c=—-1,p=-1
4. forj:1---m
5. fori:0---m
6. Yy =yli - J]
7. if ~tree(y’) or 3k : (4, k, j) € y continue
8. 5 =s(z,y) - s(z,y)
9. iféd >m

10. m=4dc=jp=1

11. end for

12. end for

13. ifm >0

14. y=ylp—d

15. else return y

16. end while

Figure12

Approximate second-order non-projective parsing algorithm.

tree. Pseudo-code for the algorithm is given in Figure 12. The expression y[¢ — j] denotes the
dependency graph identical to y except that z;’s head is z; instead of what it was in y. The test
tree(y) is true iff the dependency graph y satisfies the tree constraint.

In more detail, line 1 of the algorithm sets y to the highest scoring second-order projective
tree. The loop of lines 2-16 exits only when no further score improvement is possible. Each
iteration seeks the single highest-scoring change in dependency within y that does not break the
tree constraint. To that effect, the nested loops starting in lines 4 and 5 enumerate all (4, ) pairs.
Line 6 sets ¢' to the dependency graph obtained from y by changing z;’s head to ;. Line 7
checks that the move from y to y’ is valid and that «-;’s head was not already z; and that ¢’ is
a tree. Line 8 computes the score change from y to ¢’. If this change is larger then the previous
best change, we record how this new tree was created (lines 9-10). After considering all possible
valid edge changes to the tree, the algorithm checks to see that the best new tree does have a
higher score. If that is the case, we change the tree permanently and re-enter the loop. Otherwise
we exit since there are no single edge changes that can improve the score.

This algorithm allows for the introduction of non-projective edges because we do not restrict
any of the edge changes except to maintain the tree property. In fact, if any edge change is ever
made, the resulting tree is guaranteed to be non-projective, otherwise there would have been a
higher scoring projective tree that would have already been found by the exact projective parsing
algorithm.

It is clear that this approximation will always terminate — there are only a finite number
of dependency trees for any given sentence and each iteration of the loop requires an increase
in score to continue. However, the loop could potentially take exponential time, so we will
bound the number of edge transformations to a fixed value M. It is easy to argue that this
will not hurt performance. Even in freer-word order languages such as Czech, almost all non-
projective dependency trees are primarily projective, modulo a few non-projective edges. Thus,
if our inference algorithm starts with the highest scoring projective parse, the best non-projective
parse only differs by a small number of edge transformations. Furthermore, it is easy to show
that each iteration of the loop takes O(n?) time, resulting in a O(n® + Mn?) runtime algorithm.
In practice, the approximation terminates after a small number of transformations and we do
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not bound the number of iterations in our experiments. In fact, the run-time of this algorithm is
dominated by the call to 2-order-proj.

We should note the similarity of this approximate dependency parsing algorithm with that
of Foth et al. (Foth et al. 2000). In that work they describe an algorithm for constraint based
dependency parsing (Maruyama 1990; Harper and Helzerman 1995) in which a suboptimal
solution is initially found and subsequent local constraint optimizations attempt to push the
algorithm near the global optimum. As is the case with our algorithm it is possible for this
method to get stuck in a local maxima. Their main motivation to designing this algorithm was to
overcome difficulties in a standard constraint based dependency grammar when parsing spoken
dialogue.

5. Feature Representation

In the last section, we defined the score of an edge as s(%,5) = w - f(¢, 7). This assumes that
we have a high-dimensional feature representation for each edge (7, 7). The basic set of features
we use are shown in Table 1a and b. All features are conjoined with the direction of attachment
as well as the distance between the two words creating the dependency. These features provide
back-off from very specific features over words and part-of-speech (POS) tags to less sparse
features over just POS tags. These features are added for both the entire words as well as the
5-gram prefix if the word is longer than 5 characters.

Using just features over head-modifier pairs in the tree is not enough for high accuracy
since all attachment decisions are made outside of the context in which the words occurred.
To solve this problem, we added two more types of features, which can be seen in Table 1c.
The first new feature class recognizes word types that occur between the head and modifier
words in an attachment decision. These features take the form of POS trigrams: the POS of
the head, that of the modifier, and that of a word in between, for all distinct POS tags for the
words between the head and the modifier. These features were particularly helpful for nouns
to select their heads correctly, since they help reduce the score for attaching a noun to another
noun with a verb in between, which is a relatively infrequent configuration. The second class
of additional features represents the local context of the attachment, that is, the words before
and after the head-modifier pair. These features take the form of POS 4-grams: The POS of the
head, modifier, word before/after head and word before/after modifier. We also include back-off
features to trigrams where one of the local context POS tags was removed.

These new features can be easily added since they are given as part of the input and do
not rely on knowledge of dependency decisions outside the current edge under consideration.
Adding these features resulted in a large improvement in performance and brought the system to
state-of-the-art accuracy.

As mentioned earlier, all of the runtime analysis relied on the fact that the calculation of
s(i,7) was O(1), when in fact it is really linear in the number of features that are active for
each edge. Table 1 shows that for each edge there are only a handful of bigram and unigram
features as well as context POS features. More troubling are the POS features for all the words
in-between the two words in the edge - this in fact makes the calculation of s(3, j) at least O(n)
making the projective parsing algorithms O(n*) and the non-projective parsing algorithm O (n?).
However, a feature can be active at most once for each distinct POS, e.g., if there are two proper
nouns (NNP) between z; and z;, the feature is active only once. We define a table pos(i, j)
that is the set of POS tags for all the words in-between z; and ;. This table can be calculated
statically before parsing in O(n?) using a dynamic programming algorithm that fills in the table
for successively larger sub-strings. It is easy to see that pos(i, j) is equal to pos(i,j — 1) plus
the POS of z;_,, if it is not already in pos(i, j — 1), which can be calculated in O(1) using a
hash map. We have now only added (not multiplied) a factor of O(n?) to the runtime. Using this
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Basic Uni-gram Features

@ ; -word, @ ; -pos

a ;-word

T ; -pos

@ j -word, z ;-pos

b)

Basic Bi-gram Features

@;-word, 2 -pos, @ ;-word, = ; -pos

@ ; -pos, zj—word, @ j-pos

@ ; -word, @ -word, @ j -pos

@ ;-Word, z ; -pos, z ; -pos

@ ;-word, z ; -pos, = ; -word

)

In Between POS Features

@ ;-pos, b-pos, = ; -pos

Surrounding Word POS Features

® ; -poS, T ; -PoSt1, zj -pos-1, @ j-pos

® ;-pos-1, z ; -pos, zj -pos-1, @ j-pos

d

Second-order Features

T §-PoS, @3, -POS, = 5 -pOS

@ 1, -POS, @ j -pos

@ 3, -word, z ; -word

@ j -word - S J @ P05, @ ;-poSFL, @ ;-pos, @ 7 -poSFL mk-word,zj-mz
z ;-pos @4 -word, z ;j -wor oS oi- " ey Z J, ~POS, @ 5 -Wor
4 @;-pos-1, @;-pos, @ -pos, @ ; -pos
@ ;-pOS, @ j -pos
Table1

Features used by system, f(¢, j), where x; is the head and z; the modifier in the dependency relation.
x;-word: word of head in dependency edge. x ;-word: word of modifier. z;-pos: POS of head. x ;-pos: POS
of modifier. z;-pos+1: POS to the right of head in sentence. x;-pos-1: POS to the left of head. x;-pos+1:
POS to the right of modifier. 2;-pos-1: POS to the left of modifier. b-pos: POS of a word in between head
and modifier.

table we can now calculate s(i, ) without enumerating all words in-between. The result is that
our grammar constant is now, in the worst case, on the order of the number of distinct POS tags,
which is typically around 40 or 50, plus the handful of unigram, bigram and context features.
When compared to the grammar constant for phrase-structure parsers this is still very favorable.

5.1 Second-Order Features

Since we are also building a second-order parsing model, we must define f(i, &, j). We let the
first set of features be all those in the definition of f(¢, j). This is possible by simply ignoring
the middle index and creating features only on the original head-modifier indexes. In addition to
these features, we add the features in Table 1d.

These new features have two versions. The first is exactly as described in the table. The
second conjoins them with the distance between the two siblings as well as the direction of
attachment (from the left or right). These features were tuned on a development set. We tried
additional features, such as the POS of words in-between the two siblings, but the set defined
here seemed to provide optimal performance.

6. Initial Experiments
6.1 Data Sets

We performed these experiments on three sets of data, the Penn English Treebank (Marcus et al.
1993), the Czech Prague Dependency Treebank (PDT) v1.0 (Haji¢ 1998; Hajic et al. 2001) and
the Penn Chinese Treebank (Xue et al. 2004). For the English data we extracted dependency trees
using the rules of Yamada and Matsumoto (Yamada and Matsumoto 2003), which are similar,
but not identical, to those used by Collins (Collins 1999) and Magerman (Magerman 1995).
Because the dependency trees are extracted from the phrase-structures in the Penn Treebank,
they are by construction exclusively projective. We used sections 02-21 of the Treebank for
training data, section 22 for development and section 23 for testing. All experiments were run
using every single sentence in each set of data regardless of length. For the English data only, we
followed the standards of Yamada and Matsumoto (Yamada and Matsumoto 2003) and did not
include punctuation in the calculation of accuracies. For the test set, the number of words without
punctuation is 49,892. Since our system assumes part-of-speech information as input, we used
the maximum entropy part-of-speech tagger of Ratnaparkhi (Ratnaparkhi 1996) to provide tags
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for the development and testing data. The number of features extracted from the Penn Treebank
were 6,998, 447 for the first-order model and 7, 595, 549 for the second-order model.

For the Czech data, we did not have to automatically extract dependency structures since
manually annotated dependency trees are precisely what the PDT contains. We used the prede-
fined training, development and testing split for the data. Furthermore, we used the automatically
generated POS tags that were provided with the data. Czech POS tags are extremely complex and
consist of a series of slots that may or may not be filled with some value. These slots represent
lexical properties such as standard POS, case, gender, and tense. The result is that Czech POS
tags are rich in information, but quite sparse when viewed as a whole. To reduce sparseness, our
features rely only on the reduced POS tag set from Collins et al. (Collins et al. 1999). The number
of features extracted from the PDT training set were 13,450, 672 for the first-order model and
14,654, 388 for the second-order model.

Czech has more flexible word order than English and as a result the PDT contains non-
projective dependencies. On average, 23% of the sentences in the training, development and
test sets have at least one non-projective dependency. However, less than 2% of total edges are
actually non-projective. Therefore, handling non-projective arcs correctly has a relatively small
effect on overall accuracy. To show the effect more clearly, we created two Czech data sets.
The first, Czech-A, consists of the entire PDT. The second, Czech-B, includes only the 23% of
sentences with at least one non-projective dependency. This second set will allow us to analyze
the effectiveness of the algorithms on non-projective material.

The Chinese data set was created by extracting dependencies from the Penn Chinese Tree-
bank (Xue et al. 2004) using the head rules that were created by a native speaker primarily for
the purpose of building a machine translation system. Again, because the dependency trees are
extracted from the phrase-structures, they are by construction exclusively projective. We split the
data into training and testing by placing every tenth sentence in the data into the test set. We use
gold POS tags for this data set since we have not yet trained a Chinese POS tagger. The number
of features extracted from the Penn Chinese Treebank training set were 2,985, 843 for the first-
order model and 3, 346, 783 for the second-order model. Unlike English and Czech, we did not
include any 5-gram prefix features.

6.2 Results: Unlabeled Dependencies

This section is primarily divided into two sections, projective and non-projective results. For the
non-projective results we focus on the Czech data since it contains this particular phenomenon.

The first two sections compare pure dependency parsers only, i.e., those parsers trained only
on dependency structures. We include a third section that compares our parsers to lexicalized
phrase-structure parsers, which have been shown to produce state-of-the-art dependency results
(Yamada and Matsumoto 2003).

6.2.1 Projective Parsing Results. We compare five systems,

e Y&M2003: The Yamada and Matsumoto parser (Yamada and Matsumoto 2003)
is a discriminative parser based on local decision models trained by an SVM.
These models are combined in a shift-reduce parsing algorithm similar to
Ratnaparkhi (Ratnaparkhi 1999).

e N&S2004: The parser of Nivre and Scholz (Nivre and Scholz 2004) is a memory
based parser with an approximate linear parsing algorithm.
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English Czech-A Chinese
Accuracy Complete Accuracy Complete Accuracy Complete
Y&M2003 90.3 38.4
N&S2004 87.3 30.4 - -
N&N2005 - - 78.5 20.6 - -
15t-order-proj 90.7 36.7 83.0 30.6 79.7 27.2
2"4_order-proj 91.5 42.1 84.2 33.1 82.5 32.6
Table 2

Unlabeled projective dependency parsing results. Accuracy is the percentage of words modififying the
correct head. Complete is the percentage of sentences for which the entire predicted dependency graph was
correct.

. N&N2005: The parser of (Nivre and Nilsson 2005), which is an extension of
N&S2004 to Czech. This paper presents both a projective and non-projective
variant. We report the non-projective results in the next section.

e  1%t-order-proj: This parser uses the Eisner first-order projective parsing
algorithm combined with the MIRA learning framework.

e 2nd_grder-proj: This parser uses the second-order extension of the Eisner
algorithm combined with the MIRA learning framework.

Results are shown in Figure 2. Not all systems report all results. Across all languages
the parsers we have developed here provide state-of-the-art performance without any language
specific enhancements. It can be argued that the primary reason for this improvement is the
parsers ability to incorporate millions of rich dependent features, which is not possible in for
the history based models (Nivre and Nilsson 2005; Nivre and Scholz 2004). The Yamada and
Matsumoto (Yamada and Matsumoto 2003) SVM parser also has this ability. However, their
locally trained model can suffer from the label bias problem (Lafferty et al. 2001) as well as error
propagation during their shift-reduce search. Furthermore, we can also see that the introduction
of second-order features improves parsing substantially for all languages, as expected.

6.2.2 Non-projective Parsing Results. As mentioned earlier, 23% of the sentences in the PDT
contain at least one non-projective dependency and roughly 2% of all dependencies are non-
projective. In this section we examine the performance of our non-projective parsers on the entire
PDT (data set Czech-A) as well as a subset containing only those sentences with non-projective
dependencies (data set Czech-B).

We compare five systems,

e N&N2005: The parser of Nivre and Nilsson (Nivre and Nilsson 2005) is a
memory based parser like (Nivre and Scholz 2004). This parser models
non-projective dependencies through edge transformations encoded into labels on
each edge. For instance a label can encode a parental raises in the tree (when a
edge is raised along the spine towards the root of the tree).

e 1%t-order-proj: The first-order projective parser from Section 6.2.1.
e 27d.grder-proj: The second-order projective parser from Section 6.2.1.

e 1%t-order-non-proj: This parser uses the Chu-Liu-Edmonds MST algorithm as
described in Section 3.2.
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Czech-A Czech-B
Accuracy Complete Accuracy Complete
N&N2005 80.0 31.8 - -
15t-order-proj 83.0 30.6 74.4 0.0
274 _order-proj 84.2 33.1 74.6 0.0
15t -order-non-proj 84.1 32.2 81.0 14.9
274 _order-non-proj 85.2 35.9 81.9 15.9

Table3
Unlabeled non-projective dependency parsing results.

e 2"dorder-non-proj: This parser uses the approximate second-order
non-projective parsing algorithm described in Section 4.2.

Results are shown in Figure 3. This table shows us that for both the first and second-
order models, modeling non-projective dependencies leads to an improvement in performance of
around 1% absolute. Especially surprising is that the second-order approximate algorithm leads
to such a large improvement. The most likely reason is that the approximate post-process edge
transformations are incorporated into the online learning algorithm, which allows the model to
adjust its parameters for common mistakes made during the approximation. Thus the algorithm
learns quickly that the best non-projective tree is typically only one or two edge transformations
away from the highest scoring projective tree.

As mentioned earlier, we have not been able to put a worst-case complexity on our ap-
proximate second-order non-projective parsing algorithm. However, in terms of runtime, our
projective O(n?) second-order model runs in 16m32s and our non-projective approximation in
17m03s on the Czech evaluations data. Clearly, the post-process approximate step of inference
does not in practice add too much time. This is because each sentence typically contains only
a handful of non-projective dependencies. As a result the algorithm will learn not to adjust too
many edges after the initial projective parsing step.

7. Labeled Dependency Parsing

Though most large scale evaluations of dependency parsers have dealt with unlabeled depen-
dency accuracies, it is clear that labeled dependency structures like those in Figure 3 are more
desirable for further processing since they identify not only the modifiers of a word, but also
their specific syntactic or grammatical function. As a result, many standard dependency parsers
already come with the ability to label edges (Lin 1998; Nivre and Scholz 2004; Sleator and
Temperley 1993). In this section we extend the algorithms previously presented to include
syntactic labels. We assume throughout this section that there is a known set ¢t € T' of labels
and that our training data is annotated with this information.

One simple approach would be to extract the highest scoring unlabeled trees and then run a
classifier over its edges to assign labels. Dan Klein recently showed that labeling is relatively easy
and that the difficulty of parsing lies in creating bracketings (Klein 2004), providing evidence that
a two-stage approach may prove good enough. However, for the sake of completeness, we will
provide details and experiments on learning dependencies trees with labels in a single stage as
well as a two-stage system.
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7.1 First-Order Labeling

For first-order parsing we will change our edge score function to include label information,

8(7:7j7 t) =W f(’l,], t)

In other words, we now define the score of the edge as the dot product between a weight vector
and a high dimensional feature representation of the edge and that edges label. Hence the score
of a dependency tree will now be,

s(w,y)z Z Wf(%]at)

(i,j.t)€y

Both the Eisner projective and the Chu-Liu-Edmonds non-projective parsing algorithm can be
modified so that only an O(|T'|n?) factor is added (not multiplied) to the run-time.
Consider a label ¢ for an edge (4, 5) such that,

t = argmax W - f(4, j, 1)
tl

It is easy to show that, if the highest scoring tree ¢ under some weight vector w contains the
edge (i, j), then the label of this edge must be ¢. Consider some y = argmax,, s(,y) and an
arbitrary edge (4, 4,t) € y. Assume that ¢ # argmax, w - f(i, 4, t'). We can simply replace the
label of this edge with the label that maximizes the edge score to produce a higher scoring tree.
Thus, by contradiction, it must be the case that t = arg max, w - (4, j,¢').

Using this fact, we can define a table bt (7, j) such that each entry stores the best label for
that particular edge, i.e.,

bt(i,j) = argmax w - f(i, 5, ')
t,

This table takes O(|T'|n?) to calculate and can be calculated statically before parsing. Dur-
ing parsing we define s(i,7) = s(4, 4, bt(4,4)) and we can run the algorithm as before with-
out increasing complexity. Thus the new complexity for the projective parsing algorithm is
O(n® + |T|n?) and O(|T'|n?) for the non-projective algorithm.

7.2 Second-Order Labeling

We redefine the second-order edge score to be,
S(Z7 k:j; t) =W- f(7’7 k:j; t)

This is the score of creating an edge from word z; to z; with edge label ¢ such that the last
modifier of z; was x. It is easy to show that we can use the same trick here and statically
calculate,

bt(i, k,j) = argmax w - f(i, k, j, t')
t/
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and set s(i, k,j) = s(i, k, j,bt(i, k, j)) to allow us to apply our old parsing algorithms*. The
result is a O(|T'|n®) complexity for the second-order projective extension since it will take
O(|T|n?) to compute bt (i, k, j).

We could have defined our second-order edge score as,

s(zﬂ k)j) t’7t) = W ) f(i’k’j7 t,)t)

where ¢’ is the label for the edge (i, k). This would allow us to model common sibling edge
labels, e.g., possibly preventing a verb from taking adjacent subjects. However, inference under
this definition becomes O(|T'|?>n?), which can be prohibitive if the number of labels is large.

7.3 Two-Stage Labeling

As mentioned earlier, a simple solution would be to create a second stage that takes the output
parse y for sentence x and classifies each edge (¢, j) € y with a particular label ¢. Though one
would like to make all parsing and labeling decisions jointly to include the shared knowledge
of both decisions when resolving any ambiguities, joint models are fundamentally limited by
the scope of local factorizations that make inference tractable. In our case this means we are
forced only to consider features over single edges or pairs of edges in the tree. Furthermore, the
complexity of inference increases by a factor of the number of possible labels, which can be very
detrimental if the label set is large. However, in a two-stage system we can incorporate features
over the entire output of the unlabeled parser since that structure is fixed as input. The simplest
two-stage method would be to take as input an edge (i, ) € y for sentence & and find the label
with highest score,

t = argmax s(t, (i,7),y, )
t

Doing this for each edge in the tree would produce the final output. Such a model could easily be
trained using the provided training data for each language. However, it might be advantageous
to know the labels of other nearby edges. For instance, if we consider a head z; with dependents
Zj ..., Tj,,, IUis Often the case that many of these dependencies will have correlated labels. To
model this we treat the labeling of the edges (i, j1), ..., (¢, ja) as a sequence labeling problem,

(t(i,,h)a s Jt(i,jM)) =t= arginax S(ZJiJ Yy, IB)

We use a first-order Markov factorization of the score

M
t = argmax D 8t Ui 6 Y @)

m=2

in which each factor is the score of assigning labels to the adjacent edges (¢, 7,,) and (2, jim—1)
in the tree y. We attempted higher-order Markov factorizations but they did not always improve
performance and training became significantly slower.

For score functions, we use the standard dot products between high dimensional feature
representations and a weight vector. Assuming we have an appropriate feature representation,

4 Additional care is required in the non-projective second-order approximation since a change of one edge could
result in a label change for multiple edges.
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we can find the highest scoring label sequence with Viterbi’s algorithm. We use the MIRA
online learner to set the weights since we found it trained quickly and provide good performance.
Furthermore, it made the system homogeneous in terms of learning algorithms since that is what
is used to train our unlabeled parser. Of course, we have to define a set of suitable features. We
used the following:

e  Edge Features: Word/pre-suffix/POS feature identity of the head and the modifier
(suffix lengths 2 and 3). Does the head and its modifier share a prefix/suffix.
Attachment direction. Is the modifier the first/last word in the sentence?

e  Sibling Features: Word/POS/pre-suffix feature identity of the modifiers left/right
siblings in the tree (siblings are words with same head in the tree)? Do any of the
modifiers siblings share its POS?

e  Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a head other than the
head? Are any of the words between the head and the modifier not a descendent of
the head (i.e. non-projective edge)?

e Non-local: How many modifiers does the modifier have? Is this the left/right-most
modifier for the head? Is this the first modifier to the left/right of the head?

Various conjunctions of these were included based on performance on held-out data. Note
that many of these features are beyond the scope of the edge based factorizations of the unlabeled
parser. Thus a joint model of parsing and labeling could not easily include them without some
form of re-ranking or approximate parameter estimation.

7.4 Experiments

In this section we report results for the first-order labeled dependency models described in
Section 7.1 as well as a two-stage labeling system, i.e., one that learns a model to label the output
of an unlabeled dependency parser. We report results for English on the WSJ using sections 02-
21 for training, section 22 for development and section 23 for evaluation. To extract labeled
dependency trees from this data, we took the label of the highest node in the phrase-structure
tree for which that word is the lexical head. For example, the phrase-structure tree for John hit
the ball with the bat would be transformed into a labeled dependency tree as shown in Figure 13.
Running an extraction script (we used Penn2Malt (Nivre 2004)) resulted in the set of 29 labels
shown in Figure 14. The labels are standard from the Penn Treebank, except the labels ‘DEP’,
which is meant to represent a generic dependency, and ‘ROOT’, which is designated for modifiers
of the artificial root node.

In the next sections we report results for English on Labeled Accuracy and Unlabeled
Accuracy. The former measures the number of words who correctly identified their head and
assign the correct label to the edge and the latter measure normal unlabeled dependency parsing
accuracy (as discussed in the last section). We always use the projective parsing algorithms in
this evaluation since the English data set is exclusively projective.

7.4.1 First-Order Results. Results for the first-order labeling model (Section 7.1) are shown in
Table 4. The first thing to note is that even with a large set of possible labels (28), overall accuracy
drops only 2% absolute, which roughly says that the labeling accuracy is 97.6% accurate over
correctly identified dependencies.
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S root\
ROOT
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\ PP NP—SBJ/ m [ \
~— John _pall with
NP-SBJ NP-OBJ NP

| / | / ' P DEP NP «

N VDI N IN DT N the _ bat
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John hit the ball  with the bat the “
Figure13
Converting a phrase-structure tree to a labeled dependency tree.
ADJP LST NX S VP
ADVP NAC PP SBAR
CONJP NP PRN SBARQ WHQEVP
DEP NP-OBJ PRT SINV X
FRAG NP-PRD QP SQ ROOT
INTJ NP-SBJ ROOT UCP
Figure14
Labels extracted from WSJ.
English
Labeled Accuracy  Unlabeled Accuracy
15t-order-proj with joint labeling 88.7 90.9

Table4
First-order labeling results for English.

Interestingly, unlabeled accuracy actually improves (from 90.7 to 90.9). This is consistent
with previous results (Nivre and Scholz 2004) and displays that learning to label and find
dependencies jointly will help overall performance. However, this benefit does come at the
expensive of computation, since the training and inference have an added O(T'n?) term, which
in practice leads to roughly to run times on the order of 3 times slower than the unlabeled system.
The fact that second-order joint parsing and labeling results in a run-time complexity of O(T'n?)
made it unreasonable to train large models in a practical amount of time. In the next section, it will
be shown that learning to label and find dependencies separately does not degrade performance
and has much nicer computational properties.

7.4.2 Two-Stage Results. Results for two-stage labeling (Section 7.3) are shown in Table 5. From
this table, we can see that a two-stage labeler with a rich feature set does just as well as a joint
labeler that is restricted to features over local factorizations (88.8 vs. 88.7). The advantage of the
two stage labeler is that it is much quicker to train and run, with a complexity of O(n?® + T%n),
where the T'? factor comes from the fact that we have to run Viterbi’s algorithm. Furthermore,
the complexity for the second-order model is identical at O(n® + T?n) and can be trained very
efficiently. Results for this system are also shown in Table 5 and once again display the advantage
of a second-order model.
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English
Labeled Accuracy  Unlabeled Accuracy
13t -order-proj with joint labeling 88.7 90.9
15t-order-proj with 2-stage labeling 88.8 90.7
2md_order-proj with 2-stage labeling 89.4 91.5

Table5
Two-stage labeling results for English.

8. Multi-lingual Dependency Parsing

An important question for any parsing model is, how well does it apply to new languages? In this
section we aim to show that the models described in this work are, for the most part, language
independent. We do this by evaluating the models on 14 diverse languages. This data set includes
the 13 standard dependency data sets provided by the organizers of the 2006 CoNLL shared task
(Buchholz et al. 2006) plus the English data set we described in Section 6.1. We show that our
standard parser with little to no language specific enhancements achieves high parsing accuracies
across all languages (relative to state-of-the-art). This is a very promising result and a strong
argument for the applicability of the parsers in this work. We used the two-stage parsing model
described in Section 7.3 for all experiments in this chapter.

8.1 Data Sets

We refer the reader to (Buchholz et al. 2006) for more inforamtion on the data sets used.

8.2 Adding Morphological Features

One advantage of the CoNLL data sets is that they came with derived morphological features
for each language. The types of features differed by data set so we incorporated them into our
models in a general way.

For the unlabeled dependency parser we augmented the feature representation of each edge.
Consider a proposed dependency of a modifier =; for the head z;, each with morphological
features M; and M; respectively. We then add to the representation of the edge: M; as head
features, M; as modifier features, and also each conjunction of a feature from both sets. These
features play the obvious role of explicitly modeling consistencies and commonalities between a
head and its modifier in terms of attributes like gender, case, or number.

For the second-stage labeler we used the following feature set,

e Edge Features: Word/pre-suffix/POS/morphological feature identity of the head
and the modifier (suffix lengths 2 and 3). Does the head and its modifier share a
prefix/suffix. Attachment direction. What morphological features do head and
modifier have the same value for? Is the modifier the first/last word in the
sentence?

e  Sibling Features: Word/POS/pre-suffix/morphological feature identity of the
modifiers left/right siblings in the tree (siblings are words with same head in the
tree)? Do any of the madifiers siblings share its POS?
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UA LA

Arabic | 79.3  66.9
Bulgarian | 92.0 87.6
Chinese | 91.1 859
Czech | 87.3 80.2
Danish | 90.6 84.8
Dutch | 83.6 79.2
English | 91.5 89.4
German | 90.4 873
Japanese | 92.8 90.7
Portuguese | 91.4 86.8
Slovene | 832 734
Spanish | 86.1 82.3
Swedish | 88.9 825
Turkish | 747 63.2

Average | 87.4 814

Table6
Dependency accuracy on 14 languages. Unlabeled (UA) and Labeled Accuracy (LA).

e  Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a head other than the
head? Are any of the words between the head and the modifier not a descendent of
the head (i.e. non-projective edge)?

e Non-local: How many modifiers does the modifier have? What morphological
features does the grandparent and the modifier have identical values? Is this the
left/right-most modifier for the head? Is this the first modifier to the left/right of
the head?

Thisis identical to the old feature set, except where morphology features have been included.
8.3 Experiments

Based on performance from a held-out section of the training data, we used non-projective
parsing algorithms for Czech, Danish, Dutch, German, Japanese, Portuguese and Slovene, and
projective parsing algorithms for Arabic, Bulgarian, Chinese, English, Spanish, Swedish and
Turkish®. Furthermore, for Arabic and Spanish, we used lemmas instead of inflected word forms
since this seemed to alleviate sparsity in parameter estimates for these languages.

Results on the test sets are given in Table 6. Performance is measured through unlabeled
accuracy, which is the percentage of words that correctly identify their head in the dependency
graph, and labeled accuracy, which is the percentage of words that identify their head and label
the edge correctly in the graph. Punctuation is ignored for all languages. For all languages
except English, a token is considered punctuation if and only if all of its characters are unicode
punctuation characters. For English we define punctuation identical to Yamada and Matsumoto
(‘YYamada and Matsumoto 2003).

These results show that a two-stage system can achieve a relatively high performance. In
fact, for every language our models perform significantly higher than the average performance
for all the systems reported in the CoNLL 2006 shared task (Buchholz et al. 2006) and represent

5 Using the non-projective parser for all languages does not effect performance significantly.
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the best reporting system for Arabic, Bulgarian, Czech, Danish, Dutch, German, Slovene and
Spanish (English was not included in the shared task).

9. Summary

This paper provided an overview of the work of McDonald et al. (McDonald et al. 2005a, 2005b;
McDonald and Pereira 2006; McDonald et al. 2006) on global inference and learning algorithms
for data-driven dependency parsing. Further details can be found in the thesis of McDonald
(McDonald 2006), which includes analysis, example feature set extractions, phrase-structure
conversion head rules, applications, learning and parsing non-tree dependency graphs and more
experiments not only on parsing accuracy, but also on CPU performance.
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Abstract

We present a comparative error analysis
of the two dominant approaches in data-
driven dependency parsing: global, exhaus-
tive, graph-based models, and local, greedy,
transition-based models. We show that, in
spite of similar performance overall, the two
models produce different types of errors, in
a way that can be explained by theoretical
properties of the two models. This analysis
leads to new directions for parser develop-
ment.

1 Introduction

Syntactic dependency representations have a long
history in descriptive and theoretical linguistics and
many formal models have been advanced (Hudson,
1984; Mel’Cuk, 1988; Sgall et al., 1986; Maruyama,
1990). A dependency graph of a sentence repre-
sents each word and its syntactic modifiers through
labeled directed arcs, as shown in Figure 1, taken
from the Prague Dependency Treebank (Bohmové et
al., 2003). A primary advantage of dependency rep-
resentations is that they have a natural mechanism
for representing discontinuous constructions, aris-
ing from long distance dependencies or free word
order, through non-projective dependency arcs, ex-
emplified by the arc from jedna to Z in Figure 1.
Syntactic dependency graphs have recently
gained a wide interest in the computational lin-
guistics community and have been successfully em-
ployed for many problems ranging from machine
translation (Ding and Palmer, 2004) to ontology
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Figure 1: Example dependency graph.

construction (Snow et al., 2004). In this work we
focus on a common parsing paradigm called data-
driven dependency parsing. Unlike grammar-based
parsing, data-driven approaches learn to produce de-
pendency graphs for sentences solely from an anno-
tated corpus. The advantage of such models is that
they are easily ported to any domain or language in
which annotated resources exist.

As evident from the CoNLL-X shared task on de-
pendency parsing (Buchholz and Marsi, 2006), there
are currently two dominant models for data-driven
dependency parsing. The first is what Buchholz and
Marsi (2006) call the “all-pairs” approach, where ev-
ery possible arc is considered in the construction of
the optimal parse. The second is the “stepwise” ap-
proach, where the optimal parse is built stepwise and
where the subset of possible arcs considered depend
on previous decisions. Theoretically, these models
are extremely different. The all-pairs models are
globally trained, use exact (or near exact) inference
algorithms, and define features over a limited history
of parsing decisions. The stepwise models use local
training and greedy inference algorithms, but define
features over a rich history of parse decisions. How-
ever, both models obtain similar parsing accuracies



McDonald | Nivre

Arabic 66.91 66.71
Bulgarian 87.57 87.41
Chinese 85.90 86.92
Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59
German 87.34 85.82
Japanese 90.71 91.65
Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs™) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1,...,ljz} be a set of permissible arc
labels. Let z = wg, w1, ...,w, be an input sen-
tence where wo=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V, A) consisting of a set of nodes V' and a
set of labeled directed arcs A C V x V x L, i.e., if
(i,4,1) € Afori,j € V and [ € L, then there is an

arc from node 7 to node j with label [ in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1. V={0,1,...,n}
2. 1f (i, j,1) € A, then j # 0.

3. If (4,7,1) € A, then for all // € V — {i} and
Ul'elL, (V,4,U)¢ A

4. Forall j € V —{0}, there is a (possibly empty)
sequence of nodes i1,...,%,,€V and labels
ll, ey lm, leL such that (0, 11, ll),(il, 12, lg),
vy (im, 7, D€A.

The constraints state that the dependency graph
spans the entire input (1); that the node O is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node O to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, 1) is non-
projective if not all words k occurring between ¢ and
7 in the linear order are dominated by ¢ (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing

For an input sentence, x = wg, w1, . . . , Wy, consider
the dense graph G, = (V,,, A,) where:

1. V, ={0,1,...,n}
2. Ay = {(i,j,1) | Vi, j e Vyandl € L}

Let D(G,) represent the subgraphs of graph G,
that are valid dependency graphs for the sentence
x. Since GG, contains all possible labeled arcs, the
set D(G,,) must necessarily contain all valid depen-
dency graphs for z.

Assume that there exists a dependency arc scoring
function, s : V x V x L — R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G=(V,A)= > si,41)
(i,5,1)eA
The score of a dependency arc, s(i, j,1) represents
the likelihood of creating a dependency from word
wj to word w; with the label [. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,



G = argmax s(G) = arg max Z s(i,7,1)
GeD(Gy)

This problem is equivalent to finding the highest
scoring directed spanning tree in the graph G, origi-
nating out of the root node 0, which can be solved for
both the labeled and unlabeled case in O(n?) time
(McDonald et al., 2005b). In this approach, non-
projective arcs are produced naturally through the
inference algorithm that searches over all possible
directed trees, whether projective or not.

The parsing models of McDonald work primarily
in this framework. To learn arc scores, these mod-
els use large-margin structured learning algorithms
(McDonald et al., 2005a), which optimize the pa-
rameters of the model to maximize the score mar-
gin between the correct dependency graph and all
incorrect dependency graphs for every sentence in a
training set. The learning procedure is global since
model parameters are set relative to the classification
of the entire dependency graph, and not just over sin-
gle arc attachment decisions. The primary disadvan-
tage of these models is that the feature representa-
tion is restricted to a limited number of graph arcs.
This restriction is required so that both inference and
learning are tractable.

The specific model studied in this work is that
presented by McDonald et al. (2006), which factors
scores over pairs of arcs (instead of just single arcs)
and uses near exhaustive search for unlabeled pars-
ing coupled with a separate classifier to label each
arc. We call this system MSTParser, which is also
the name of the freely available implementation. '

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. aset C of parser configurations, each of which
defines a (partially built) dependency graph G

2. aset T of transitions, each a function t: C' — C

3. for every sentence r = wg, Wi, . . . , Wn,

(a) a unique initial configuration c,
(b) aset C,, of terminal configurations

"http://mstparser.sourceforge.net

A transition sequence Cy, 1, = (Cz, €1, ..., Cn) fora
sentence x is a sequence of configurations such that
cm € C and, for every ¢; (¢; # ¢g), there is a tran-
sition ¢ € T such that ¢; = t(¢;—1). The dependency
graph assigned to x by C, ,,, is the graph G, defined
by the terminal configuration c,,.

Assume that there exists a transition scoring func-
tion, s : C x T — R. The score of a transition
t in a configuration ¢, s(c,t), represents the likeli-
hood of taking transition ¢ out of configuration c.
The parsing problem consists in finding a terminal
configuration ¢,, € C,, starting from the initial
configuration c, and taking the optimal transition
t* = arg max;cp s(c, t) out of every configuration
c. This can be seen as a greedy search for the optimal
dependency graph, based on a sequence of locally
optimal decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,
where configurations contain a stack for storing par-
tially processed nodes. Transitions in such systems
add arcs to the dependency graph and/or manipu-
late the stack. One example is the transition system
defined by Nivre (2003), which parses a sentence
T = wp, w1, . .., wy, in O(n) time, producing a pro-
jective dependency graph satisfying conditions 1-4
in section 2.1, possibly after adding arcs (0,1, 1,)
for every node i # 0 that is a root in the output
graph (where [, is a special label for root modifiers).
Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted
by using graph transformation techniques to pre-
process training data and post-process parser output,
so-called pseudo-projective parsing.

To learn transition scores, these systems use dis-
criminative learning methods, e.g., memory-based
learning or support vector machines. The learning
procedure is local since only single transitions are
scored, not entire transition sequences. The primary
advantage of these models is that features are not re-
stricted to a limited number of graph arcs but can
take into account the entire dependency graph built
so far. The main disadvantage is that the greedy
parsing strategy may lead to error propagation.

The specific model studied in this work is that pre-
sented by Nivre et al. (2006), which uses labeled
pseudo-projective parsing with support vector ma-
chines. We call this system MaltParser, which is also



the name of the freely available implementation.”

2.4 Comparison

These models differ primarily with respect to three
important properties.

1. Inference: MaltParser uses a transition-based
inference algorithm that greedily chooses the
best parsing decision based on a trained clas-
sifier and current parser history. MSTParser
instead uses near exhaustive search over a
dense graphical representation of the sentence
to find the dependency graph that maximizes
the score.

2. Training: MaltParser trains a model to make
a single classification decision (choose the next
transition). MSTParser trains a model to maxi-
mize the global score of correct graphs.

3. Feature Representation: MaltParser can in-
troduce a rich feature history based on previ-
ous parser decisions. MSTParser is forced to
restrict the score of features to a single or pair
of nearby parsing decisions in order to make
exhaustive inference tractable.

These differences highlight an inherent trade-off be-
tween exhaustive inference algorithms plus global
learning and expressiveness of feature representa-
tions. MSTParser favors the former at the expense
of the latter and MaltParser the opposite.

3 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi,
2006) was a large-scale evaluation of data-driven de-
pendency parsers, with data from 13 different lan-
guages and 19 participating systems. The official
evaluation metric was the labeled attachment score
(LAS), defined as the percentage of tokens, exclud-
ing punctuation, that are assigned both the correct
head and the correct dependency label.?

The output of all systems that participated in the
shared task are available for download and consti-
tute a rich resource for comparative error analysis.

http://w3.msi.vxu.se/users/nivre/research/MaltParser.html

3In addition, results were reported for unlabeled attachment
score (UAS) (tokens with the correct head) and label accuracy
(LA) (tokens with the correct label).

The data used in the experiments below are the out-
puts of MSTParser and MaltParser for all 13 lan-
guages, together with the corresponding gold stan-
dard graphs used in the evaluation. We constructed
the data by simply concatenating a system’s output
for every language. This resulted in a single out-
put file for each system and a corresponding single
gold standard file. This method is sound because the
data sets for each language contain approximately
the same number of tokens — 5,000. Thus, evalu-
ating system performance over the aggregated files
can be roughly viewed as measuring system perfor-
mance through an equally weighted arithmetic mean
over the languages.

It could be argued that a language by language
comparison would be more appropriate than com-
paring system performance across all languages.
However, as table Table 1 shows, the difference in
accuracy between the two systems is typically small
for all languages, and only in a few cases is this
difference significant. Furthermore, by aggregating
over all languages we gain better statistical estimates
of parser errors, since the data set for each individual
language is very small.

4 Error Analysis

The primary purpose of this study is to characterize
the errors made by standard data-driven dependency
parsing models. To that end, we present a large set of
experiments that relate parsing errors to a set of lin-
guistic and structural properties of the input and pre-
dicted/gold standard dependency graphs. We argue
that the results can be correlated to specific theoreti-
cal aspects of each model — in particular the trade-off
highlighted in Section 2.4.

For simplicity, all experiments report labeled
parsing accuracies. Identical experiments using un-
labeled parsing accuracies did not reveal any addi-
tional information. Furthermore, all experiments are
based on the data from all 13 languages together, as
explained in section 3.

4.1 Length Factors

It is well known that parsing systems tend to have
lower accuracies for longer sentences. Figure 2
shows the accuracy of both parsing models relative
to sentence length (in bins of size 10: 1-10, 11-20,
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Figure 2: Accuracy relative to sentence length.

etc.). System performance is almost indistinguish-
able. However, MaltParser tends to perform better
on shorter sentences, which require the greedy in-
ference algorithm to make less parsing decisions. As
a result, the chance of error propagation is reduced
significantly when parsing these sentences. The fact
that MaltParser has a higher accuracy (rather than
the same accuracy) when the likelihood of error
propagation is reduced comes from its richer feature
representation.

Another interesting property is accuracy relative
to dependency length. The length of a dependency
from word w; to word w; is simply equal to |i — j|.
Longer dependencies typically represent modifiers
of the root or the main verb in a sentence. Shorter
dependencies are often modifiers of nouns such as
determiners or adjectives or pronouns modifying
their direct neighbours. Figure 3 measures the pre-
cision and recall for each system relative to depen-
dency lengths in the predicted and gold standard de-
pendency graphs. Precision represents the percent-
age of predicted arcs of length d that were correct.
Recall measures the percentage of gold standard arcs
of length d that were correctly predicted.

Here we begin to see separation between the two
systems. MSTParser is far more precise for longer
dependency arcs, whereas MaltParser does better
for shorter dependency arcs. This behaviour can
be explained using the same reasoning as above:
shorter arcs are created before longer arcs in the
greedy parsing procedure of MaltParser and are less
prone to error propagation. Theoretically, MST-
Parser should not perform better or worse for edges
of any length, which appears to be the case. There
is still a slight degradation, but this can be attributed
to long dependencies occurring more frequently in
constructions with possible ambiguity. Note that

even though the area under the curve is much larger
for MSTParser, the number of dependency arcs with
a length greater than ten is much smaller than the
number with length less than ten, which is why the
overall accuracy of each system is nearly identical.
For all properties considered here, bin size generally
shrinks in size as the value on the x-axis increases.

4.2 Graph Factors

The structure of the predicted and gold standard de-
pendency graphs can also provide insight into the
differences between each model. For example, mea-
suring accuracy for arcs relative to their distance to
the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we
define this distance as the number of arcs in the re-
verse path from the modifier of the arc to the root.
Figure 4 plots the precision and recall of each sys-
tem for arcs of varying distance to the root. Preci-
sion is equal to the percentage of dependency arcs in
the predicted graph that are at a distance of d and are
correct. Recall is the percentage of dependency arcs
in the gold standard graph that are at a distance of d
and were predicted.

Figure 4 clearly shows that for arcs close to the
root, MSTParser is much more precise than Malt-
Parser, and vice-versa for arcs further away from the
root. This is probably the most compelling graph
given in this study since it reveals a clear distinction:
MSTParser’s precision degrades as the distance to
the root increases whereas MaltParser’s precision in-
creases. The plots essentially run in opposite direc-
tions crossing near the middle. Dependency arcs fur-
ther away from the root are usually constructed early
in the parsing algorithm of MaltParser. Again a re-
duced likelihood of error propagation coupled with
a rich feature representation benefits that parser sub-
stantially. Furthermore, MaltParser tends to over-
predict root modifiers, because all words that the
parser fails to attach as modifiers are automatically
connected to the root, as explained in section 2.3.
Hence, low precision for root modifiers (without a
corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behaviour of MSTParser is a little trickier to
explain. One would expect that its errors should be
distributed evenly over the graph. For the most part
this is true, with the exception of spikes at the ends
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of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision — usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j,1)
and (7', j',1’) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
i = i'. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more

precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span
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longer distances, while nouns and pronouns are typ-
ically attached to verbs and therefore occur lower in
the graph, with shorter distances. Empirically, ad-
verbs resemble verbs and conjunctions with respect
to root distance but group with nouns and pronouns
for dependency length, so the former appears to be
more important. In addition, both conjunctions and
adverbs tend to have a high number of siblings, mak-
ing the results consistent with the graph in Figure 5.

Adpositions and especially adjectives constitute
a puzzle, having both high average root distance
and low average dependency length. Adpositions do
tend to have a high number of siblings on average,
which could explain MSTParser’s performance on
that category. However, adjectives on average occur
the furthest away from the root, have the shortest
dependency length and the fewest siblings. As such,
we do not have an explanation for this behaviour.

In the top half of Figure 8, we consider precision
and recall for dependents of the root node (mostly
verbal predicates), and for subjects and objects. As
already noted, MSTParser has considerably better
precision (and slightly better recall) for the root cat-
egory, but MaltParser has an advantage for the nomi-
nal categories, especially subjects. A possible expla-
nation for the latter result, in addition to the length-
based and graph-based factors invoked before, is that

95.0%

«
=4
2

85.0% 1

80.0%

75.0%

70.0%

Labeled Attachment Score (LAS)

|
|
Nl \ &l&l&

Verb Noun Pron Adj Adv
Part of Speech (POS)

65.0%

P,
227722777/

2707777

60.0%

Figure 7: Accuracy for different parts of speech.

MaltParser integrates labeling into the parsing pro-
cess, so that previously assigned dependency labels
can be used as features, which may be important to
disambiguate subjects and objects.

Finally, in the bottom half of Figure 8, we dis-
play precision and recall for coordinate structures,
divided into different groups depending on the type
of analysis adopted in a particular treebank. The cat-
egory CCH (coordinating conjunction as head) con-
tains conjunctions analyzed as heads of coordinate
structures, with a special dependency label that does
not describe the function of the coordinate structure
in the larger syntactic structure, a type of category
found in the so-called Prague style analysis of coor-
dination and used in the data sets for Arabic, Czech,
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and Slovene. The category CCD (coordinating con-
junction as dependent) instead denotes conjunctions
that are attached as dependents of one of the con-
juncts with a label that only marks them as conjunc-
tions, a type of category found in the data sets for
Bulgarian, Danish, German, Portuguese, Swedish
and Turkish. The two remaining categories con-
tain conjuncts that are assigned a dependency label
that only marks them as conjuncts and that are at-
tached either to the conjunction (CJCC) or to an-
other conjunct (CJCJ). The former is found in Bul-
garian, Danish, and German; the latter only in Por-
tuguese and Swedish. For most of the coordination
categories there is little or no difference between the
two parsers, but for CCH there is a difference in both
precision and recall of almost 20 percentage points
to MSTParser’s advantage. This can be explained by

noting that, while the categories CCD, CJCC, and
CJCIJ denote relations that are internal to the coor-
dinate structure and therefore tend to be local, the
CCH relations hold between the coordinate struc-
ture and its head, which is often a relation that spans
over a greater distance and is nearer the root of the
dependency graph. It is likely that the difference in
accuracy for this type of dependency accounts for a
large part of the difference in accuracy noted earlier
for conjunctions as a part of speech.

4.4 Discussion

The experiments from the previous section highlight
the fundamental trade-off between global training
and exhaustive inference on the one hand and ex-
pressive feature representations on the other. Error
propagation is an issue for MaltParser, which typi-



cally performs worse on long sentences, long depen-
dency arcs and arcs higher in the graphs. But this is
offset by the rich feature representation available to
these models that result in better decisions for fre-
quently occurring arc types like short dependencies
or subjects and objects. The errors for MSTParser
are spread a little more evenly. This is expected,
as the inference algorithm and feature representation
should not prefer one type of arc over another.

What has been learned? It was already known that
the two systems make different errors through the
work of Sagae and Lavie (2006). However, in that
work an arc-based voting scheme was used that took
only limited account of the properties of the words
connected by a dependency arc (more precisely, the
overall accuracy of each parser for the part of speech
of the dependent). The analysis in this work not only
shows that the errors made by each system are dif-
ferent, but that they are different in a way that can be
predicted and quantified. This is an important step
in parser development.

To get some upper bounds of the improvement
that can be obtained by combining the strengths of
each models, we have performed two oracle experi-
ments. Given the output of the two systems, we can
envision an oracle that can optimally choose which
single parse or combination of sub-parses to predict
as a final parse. For the first experiment the oracle
is provided with the single best parse from each sys-
tem, say G = (V, A) and G’ = (V’, A’). The oracle
chooses a parse that has the highest number of cor-
rectly predicted labeled dependency attachments. In
this situation, the oracle accuracy is 84.5%. In the
second experiment the oracle chooses the tree that
maximizes the number of correctly predicted depen-
dency attachments, subject to the restriction that the
tree must only contain arcs from A U A’. This can
be computed by setting the weight of an arc to 1 if
it is in the correct parse and in the set A U A’. All
other arc weights are set to negative infinity. One can
then simply find the tree that has maximal sum of
arc weights using directed spanning tree algorithms.
This technique is similar to the parser voting meth-
ods used by Sagae and Lavie (2006). In this situa-
tion, the oracle accuracy is 86.9%.

In both cases we see a clear increase in accuracy:
86.9% and 84.5% relative to 81% for the individual
systems. This indicates that there is still potential

for improvement, just by combining the two existing
models. More interestingly, however, we can use
the analysis to get ideas for new models. Below we
sketch some possible new directions:

1. Ensemble systems: The error analysis pre-
sented in this paper could be used as inspiration
for more refined weighting schemes for ensem-
ble systems of the kind proposed by Sagae and
Lavie (2006), making the weights depend on a
range of linguistic and graph-based factors.

2. Hybrid systems: Rather than using an ensem-
ble of several parsers, we may construct a sin-
gle system integrating the strengths of each
parser described here. This could defer to
a greedy inference strategy during the early
stages of the parse in order to benefit from a
rich feature representation, but then default to
a global exhaustive model as the likelihood for
error propagation increases.

3. Novel approaches: The two approaches inves-
tigated are each based on a particular combina-
tion of training and inference methods. We may
naturally ask what other combinations may
prove fruitful. For example, what about glob-
ally trained, greedy, transition-based models?
This is essentially what Daumé III et al. (2006)
provide, in the form of a general search-based
structured learning framework that can be di-
rectly applied to dependency parsing. The ad-
vantage of this method is that the learning can
set model parameters relative to errors resulting
directly from the search strategy — such as error
propagation due to greedy search. When com-
bined with MaltParser’s rich feature represen-
tation, this could lead to significant improve-
ments in performance.

5 Conclusion

We have presented a thorough study of the dif-
ference in errors made between global exhaustive
graph-based parsing systems (MSTParser) and lo-
cal greedy transition-based parsing systems (Malt-
Parser). We have shown that these differences can
be quantified and tied to theoretical expectations of
each model, which may provide insights leading to
better models in the future.
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