Introduction to Data-Driven Dependency Parsing

Introductory Course, ESSLLI 2007

Ryan McDonald¹ Joakim Nivre²

¹Google Inc., New York, USA E-mail: ryanmcd@google.com

²Uppsala University and Växjö University, Sweden E-mail: nivre@msi.vxu.se

Formal Conditions on Dependency Graphs

Last Lecture

- For a dependency graph G = (V, A)
- With label set $L = \{l_1, \ldots, l_{|L|}\}$
- *G* is (weakly) connected:
 - If $i, j \in V$, $i \leftrightarrow^* j$.
- G is acyclic:

• If $i \to j$, then not $j \to^* i$.

- ► *G* obeys the single-head constraint:
 - If $i \to j$, then not $i' \to j$, for any $i' \neq i$.
- ► *G* is projective:
 - ▶ If $i \to j$, then $i \to^* i'$, for any i' such that i < i' < j or j < i' < i.

Dependency Graphs as Trees

- Consider a dependency graph G = (V, A) satisfying:
 - G is (weakly) connected:
 - If $i, j \in V$, $i \leftrightarrow^* j$.
 - ► *G* obeys the single-head constraint:
 - If $i \to j$, then not $i' \to j$, for any $i' \neq i$.
 - ► *G* obeys the single-root constraint:
 - ▶ If $\nexists i$ such that $i \rightarrow j$, then $\exists i$ such that $i \rightarrow j'$, for any $j' \neq j$
 - $w_0 = root$ is always this node
- This dependency graph is by definition a tree
- For the rest of the course we assume that all dependency graphs are trees

Dependency Graphs as Trees

Satisfies: connected, single-head

Dependency Graphs as Trees

Satisfies: connected, single-head, single-root

Overview of the Course

- Dependency parsing (Joakim)
- Machine learning methods (Ryan)
- Transition-based models (Joakim)
- Graph-based models (Ryan)
- Loose ends (Joakim, Ryan):
 - Other approaches
 - Empirical results
 - Available software

Data-Driven Parsing

- ▶ Data-Driven → Machine Learning
- Parameterize a model
- Supervised: Learn parameters from annotated data
- Unsupervised: Induce parameters from a large corpora
- Data-Driven vs. Grammar-driven
 - Can parse all sentences vs. generate specific language
 - Data-driven = grammar of Σ^*

Lecture 2: Outline

- Feature Representations
- Linear Classifiers
 - Perceptron
 - Large-Margin Classifiers (SVMs, MIRA)
 - Others
- Non-linear Classifiers
 - K-NNs and Memory-based Learning
 - Kernels
- Structured Learning
 - Structured Perceptron
 - Large-Margin Perceptron
 - Others

Important Message

- This lecture contains a lot of details
- Not important if you do not follow all proofs and maths
- What is important
 - Understand basic representation of data features
 - Understand basic goal and structure of classifiers
 - Understand important distinctions: linear vs. non-linear, binary vs. multiclass, multiclass vs. structured, etc.
- Interested in ML for NLP
 - Check out afternoon course "Machine learning methods for NLP"

Feature Representations

- ▶ Input: $x \in \mathcal{X}$
 - ▶ e.g., document or sentence with some words $x = w_1 \dots w_n$, or a series of previous actions
- ▶ Output: $y \in \mathcal{Y}$
 - e.g., dependency tree, document class, part-of-speech tags, next parsing action
- We assume a mapping from x to a high dimensional feature vector
 - $\mathbf{f}(x): \mathcal{X}
 ightarrow \mathbb{R}^m$
- But sometimes it will be easier to think of a mapping from an input/output pair to a feature vector
 - $\mathbf{f}(oldsymbol{x},oldsymbol{y}):\mathcal{X} imes\mathcal{Y}
 ightarrow\mathbb{R}^m$
- For any vector $\mathbf{v} \in \mathbb{R}^m$, let \mathbf{v}_j be the j^{th} value

Examples

▶ x is a document

$$\mathbf{f}_j(oldsymbol{x}) = \left\{egin{array}{cc} 1 & ext{if} oldsymbol{x} ext{ contains the word "interest"} \ 0 & ext{otherwise} \end{array}
ight.$$

 $\mathbf{f}_j(x) =$ The percentage of words than contain punctuation

 $\blacktriangleright x$ is a word and y is a part-of-speech tag

$$\mathbf{f}_j(oldsymbol{x},oldsymbol{y}) = \left\{egin{array}{ccc} 1 & ext{if} oldsymbol{x} = & ext{``bank'' and} oldsymbol{y} = & ext{Verb} \ 0 & ext{otherwise} \end{array}
ight.$$

Example 2

$$\begin{split} \mathbf{f}_0(\boldsymbol{x}) &= \left\{ \begin{array}{ll} 1 & \text{if } \boldsymbol{x} \text{ contains the word "John"} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_1(\boldsymbol{x}) &= \left\{ \begin{array}{ll} 1 & \text{if } \boldsymbol{x} \text{ contains the word "Mary"} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_2(\boldsymbol{x}) &= \left\{ \begin{array}{ll} 1 & \text{if } \boldsymbol{x} \text{ contains the word "Harry"} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_3(\boldsymbol{x}) &= \left\{ \begin{array}{ll} 1 & \text{if } \boldsymbol{x} \text{ contains the word "likes"} \\ 0 & \text{otherwise} \end{array} \right. \end{array} \right. \end{split}$$

x=John likes Mary → $f(x) = [1 \ 1 \ 0 \ 1]$ *x*=Mary likes John → $f(x) = [1 \ 1 \ 0 \ 1]$ *x*=Harry likes Mary → $f(x) = [0 \ 1 \ 1 \ 1]$ *x*=Harry likes Harry → $f(x) = [0 \ 0 \ 1 \ 1]$

Linear Classifiers

- Linear classifier: score (or probability) of a particular classification is based on a linear combination of features and their weights
- Let $\mathbf{w} \in \mathbb{R}^m$ be a high dimensional weight vector
- If we assume that w is known, then we can define two kinds of linear classifiers
 - Reminder:

$$\mathbf{v}\cdot\mathbf{v}'=\sum_j\mathbf{v}_j imes\mathbf{v}_j\in\mathbb{R}$$

• Binary Classification: $\mathcal{Y} = \{-1, 1\}$

$$y = \mathit{sign}(\mathbf{w} \cdot \mathbf{f}(x))$$

• Multiclass Classification: $\mathcal{Y} = \{0, 1, \dots, N\}$

$$m{y} = rg\max_{m{y}} \ m{w} \cdot m{f}(m{x},m{y})$$

Binary Linear Classifier

Divides all points:

$$m{y} = \mathit{sign}(m{w} \cdot m{f}(x))$$

Multiclass Linear Classifier

Defines regions of space:

Separability

► A set of points is separable, if there exists a **w** such that classification is perfect

Not Separable

Supervised Learning

- ▶ Input: training examples $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}$
- Input: feature representation f
- Output: w that maximizes/minimizes some important function on the training set
 - minimize error (Perceptron, SVMs, Boosting)
 - maximize likelihood of data (Logistic Regression, CRFs)
- Assumption: The training data is separable
 - Not necessary, just makes life easier
 - There is a lot of good work in machine learning to tackle the non-separable case

Perceptron

- Minimize error
 - Binary classification: $\mathcal{Y} = \{-1, 1\}$

$$\mathbf{w} = \operatorname*{arg\,min}_{\mathbf{W}} \sum_{t} 1 - \mathbb{1}[y_t = \mathit{sign}(\mathbf{w} \cdot \mathbf{f}(x_t))]$$

• Multiclass classification: $\mathcal{Y} = \{0, 1, \dots, N\}$

Perceptron Learning Algorithm (multiclass)

Training data:
$$\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}$$

1. $\mathbf{w}^{(0)} = 0; i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $\mathbf{y}' = \arg \max_{\mathbf{y}'} \mathbf{w}^{(i)} \cdot \mathbf{f}(x_t, \mathbf{y}')$
5. if $\mathbf{y}' \neq \mathbf{y}_t$
6. $\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, \mathbf{y}')$
7. $i = i + 1$
8. return \mathbf{w}^i

Perceptron Learning Algorithm (multiclass)

- ▶ Given an training instance (x_t, y_t), define:
 ▶ J

 √t = 𝔅 {y_t}
- A training set T is separable with margin γ > 0 if there exists a vector u with ||u|| = 1 such that:

$$\mathbf{u} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathbf{u} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}') \geq \gamma$$

for all $oldsymbol{y}'\in ar{\mathcal{Y}}_t$ and $||oldsymbol{u}||=\sqrt{\sum_joldsymbol{\mathsf{u}}_j^2}$

• Assumption: the training set is separable with margin γ

Perceptron Learning Algorithm (multiclass)

Theorem: For any training set separable with a margin of γ, the following holds for the perceptron algorithm:

Number of training errors
$$\leq \frac{R^2}{\gamma^2}$$

where $R \geq ||\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y')||$ for all $(x_t, y_t) \in \mathcal{T}$ and $y' \in \bar{\mathcal{Y}}_t$

- Thus, after a finite number of training iterations, the error on the training set will converge to zero
- Let's prove it! (proof taken from Collins '02)

Perception Learning Algorithm (multiclass)

Training data:
$$T = \{(x_t, y_t)\}_{t=1}^{|T|}$$

1. $\mathbf{w}^{(0)} = 0; i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $y' = \arg \max_{y'} \mathbf{w}^{(i)} \cdot \mathbf{f}(x_t, y')$
5. if $y' \neq y_t$
6. $\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y')$
7. $i = i + 1$
8. return \mathbf{w}^i
• Now: $\mathbf{u} \cdot \mathbf{w}^{(k)} = \mathbf{u} \cdot \mathbf{w}^{(k-1)} + \mathbf{u} \cdot (\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y_t)) = \mathbf{u} \cdot \mathbf{w}^{(k-1)} + \mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y')$
• Now: $\mathbf{u} \cdot \mathbf{w}^{(k)} = \mathbf{u} \cdot \mathbf{w}^{(k-1)} + \mathbf{u} \cdot (\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y_t)) \ge \mathbf{u} \cdot \mathbf{w}^{(k-1)} + \gamma$
• Now: $\mathbf{w}^{(0)} = 0$ and $\mathbf{u} \cdot \mathbf{w}^{(0)} = 0$, by induction on $k, \mathbf{u} \cdot \mathbf{w}^{(k)} \ge (k-1)\gamma$
• Now: since $\mathbf{u} \cdot \mathbf{w}^{(k)} \le ||\mathbf{u}|| \times ||\mathbf{w}^{(k)}||$ and $||\mathbf{u}|| = 1$ then $||\mathbf{w}^{(k)}|| \ge (k-1)\gamma$
• Now:
 $||\mathbf{w}^{(k)}||^2 = ||\mathbf{w}^{(k-1)}||^2 + ||\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y')||^2 + 2\mathbf{w}^{(k-1)} \cdot (\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y'))$
 $||\mathbf{w}^{(k)}||^2 \le ||\mathbf{w}^{(k-1)}||^2 + R^2$
(since $R \ge ||\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y')||$

and
$$\mathbf{w}^{(k-1)} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathbf{w}^{(k-1)} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}') \leq 0$$

Perception Learning Algorithm (multiclass)

- ► We have just shown that $||\mathbf{w}^{(k)}|| \ge (k-1)\gamma$ and $||\mathbf{w}^{(k)}||^2 \le ||\mathbf{w}^{(k-1)}||^2 + R^2$
- By induction on k and since $\mathbf{w}^{(0)} = 0$ and $||\mathbf{w}^{(0)}||^2 = 0$

$$||\mathbf{w}^{(k)}||^2 \le (k-1)R^2$$

Therefore,

$$(k-1)^2 \gamma^2 \le ||\mathbf{w}^{(k)}||^2 \le (k-1)R^2$$

and solving for k

$$k-1 \leq rac{R^2}{\gamma^2}$$

Therefore the number of errors is bounded!

Margin

Margin

- Intuitively maximizing margin makes sense
- More importantly, generalization error to unseen test data is proportional to the inverse of the margin

$$\epsilon \propto rac{R^2}{\gamma^2 imes |\mathcal{T}|}$$

- Perceptron: we have shown that:
 - ► If a training set is separable by some margin, the perceptron will find a w that separates the data
 - However, it does not pick a w to maximize the margin!

Max Margin = Min Norm

Let $\gamma > 0$

Max Margin:

Min Norm:

- $\max_{\substack{||\mathbf{w}|| \leq 1}} \gamma \qquad \min rac{1}{2} ||\mathbf{w}||^2$ such that: $y_t(\mathbf{w} \cdot \mathbf{f}(x_t)) \geq \gamma \qquad y_t(\mathbf{w} \cdot \mathbf{f}(x_t)) \geq 1$
 - $orall (oldsymbol{x}_t,oldsymbol{y}_t)\in\mathcal{T} \qquad \qquad orall (oldsymbol{x}_t,oldsymbol{y}_t)\in\mathcal{T}$

▶ ||w|| is bound since scaling trivially produces larger margin

 $oldsymbol{y}_t([eta {f w}] \cdot {f f}(oldsymbol{x}_t)) \geq eta \gamma$, for some $eta \geq 1$

• Instead of fixing $||\mathbf{w}||$ we fix the margin $\gamma = 1$

Support Vector Machines

Binary:

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

Multiclass:

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

such that:

such that:

Both are quadratic programming problems – a well known convex optimization problem Can be solved with out-of-the-box algorithms

Support Vector Machines

Binary:

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

such that:

$$egin{aligned} oldsymbol{y}_t(oldsymbol{w}\cdotoldsymbol{\mathsf{f}}(oldsymbol{x}_t)) &\geq 1 \ & orall (oldsymbol{x}_t,oldsymbol{y}_t) \in \mathcal{T} \end{aligned}$$

- Problem: Sometimes $|\mathcal{T}|$ is far too large
- Thus the number of constraints might make solving the quadratic programming problem very difficult
- Most common technique: Sequential Minimal Optimization (SMO)
- Sparse: solution only depends on support vectors

Margin Infused Relaxed Algorithm (MIRA)

- Another option maximize margin using an online algorithm
- Batch vs. Online
 - Batch update parameters based on entire training set (e.g., SVMs)
 - Online update parameters based on a single training instance at a time (e.g., Perceptron)
- MIRA can be thought of as a max-margin perceptron or an online SVM

MIRA (multiclass)

Batch (SVMs):

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

such that:

$$\mathbf{w} \cdot \mathbf{f}(oldsymbol{x}_t, oldsymbol{y}_t) - \mathbf{w} \cdot \mathbf{f}(oldsymbol{x}_t, oldsymbol{y}') \geq 1$$

$$orall (oldsymbol{x}_t,oldsymbol{y}_t)\in\mathcal{T}$$
 and $oldsymbol{y}'\inar{\mathcal{Y}}_t$

Online (MIRA):

Training data: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}$ 1. $\mathbf{w}^{(0)} = 0; i = 0$ 2. for n : 1..N3. for t : 1..T4. $\mathbf{w}^{(i+1)} = \arg\min_{\mathbf{w}^*} \|\mathbf{w}^* - \mathbf{w}^{(i)}\|$ such that: $\mathbf{w} \cdot \mathbf{f}(x_t, y_t) - \mathbf{w} \cdot \mathbf{f}(x_t, y') \ge 1$ $\forall y' \in \overline{\mathcal{Y}}_t$ 5. i = i + 16. return \mathbf{w}^i

- MIRA has much smaller optimizations with only |\$\vec{\mathcal{V}}_t\$| constraints
- Cost: sub-optimal optimization

Summary

What we have covered

- Feature-based representations
- Linear Classifiers
 - Perceptron
 - Large-Margin SVMs (batch) and MIRA (online)

What is next

Non-linear classifiers

Non-Linear Classifiers

- Some data sets require more than a linear classifier to be correctly modeled
- A lot of models out there
 - K-Nearest Neighbours
 - Decision Trees
 - Kernels
 - Neural Networks
- Will only discuss a couple due to time constraints

K-Nearest Neighbours

- Simplest form: for a given test point x, find k-nearest neighbours in training set
- Neighbours vote for classification
- Distance is Euclidean distance

$$d(\boldsymbol{x}_t, \boldsymbol{x}_r) = \sqrt{\sum_j (\mathbf{f}_j(\boldsymbol{x}_t) - \mathbf{f}_j(\boldsymbol{x}_r))^2}$$

No linear classifier can correctly label data set. But 3-nearest neighbours does.

K-Nearest Neighbours

► A training set *T*, distance function *d*, and value *K* define a non-linear classification boundary

Approx 3-NN decision boundary

K-Nearest Neighbours

- K-NN is often called a lazy learning algorithm or memory based learning (MBL)
- K-NN generalized in the Tilburg Memory Based Learning Package
 - Different distance functions
 - Different voting schemes for classification
 - Tie-breaking
 - Memory representations

Kernels

A kernel is a similarity function between two points that is symmetric and positive semi-definite, which we denote by:

 $\phi(\boldsymbol{x}_t, \boldsymbol{x}_r) \in \mathbb{R}$

Mercer's Theorem: for any kernal \u03c6, there exists an f, such that:

$$\phi(\boldsymbol{x}_t, \boldsymbol{x}_r) = \mathbf{f}(\boldsymbol{x}_t) \cdot \mathbf{f}(\boldsymbol{x}_r)$$

Kernel Trick – Perceptron Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \mathbf{w}^{(0)} = 0; i = 0

2. for n: 1..N

3. for t: 1..T

4. Let y = \arg \max_y \mathbf{w}^{(i)} \cdot \mathbf{f}(x_t, y)

5. if y \neq y_t

6. \mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y)

7. i = i + 1

8. return \mathbf{w}^i
```

- Each feature function f(x_t, y_t) is added and f(x_t, y) is subtracted to w say a_{y,t} times
 - ▶ a_{y,t} is the # of times during learning label y is predicted for example t

Thus,

$$\mathbf{w} = \sum_{t,y} \alpha_{y,t} [\mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, y)]$$

Kernel Trick – Perceptron Algorithm

▶ We can re-write the argmax function as:

$$y^* = \arg \max_{y^*} w^{(i)} \cdot f(x_t, y^*)$$

= $\arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [f(x_t, y_t) - f(x_t, y)] \cdot f(x_t, y^*)$
= $\arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [f(x_t, y_t) \cdot f(x_t, y^*) - f(x_t, y) \cdot f(x_t, y^*)]$
= $\arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [\phi((x_t, y_t), (x_t, y^*)) - \phi((x_t, y), (x_t, y^*))]$

 We can then re-write the perceptron algorithm strictly with kernels

Kernel Trick – Perceptron Algorithm

. _ .

Training data:
$$\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{I}|}$$

1. $\forall y, t \text{ set } \alpha_{y,t} = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $y^* = \arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [\phi((x_t, y_t), (x_t, y^*)) - \phi((x_t, y), (x_t, y^*))]$
5. if $y^* \neq y_t$
6. $\alpha_{y^*,t} = \alpha_{y^*,t} + 1$

Given a new instance x

$$m{y}^* = rgmax_{m{y}^*} \sum_{t,m{y}} lpha_{m{y},t}[\phi((m{x}_t,m{y}_t),(m{x},m{y}^*)) - \phi((m{x}_t,m{y}),(m{x},m{y}^*))]$$

But it seems like we have just complicated things???

Kernels = Tractable Non-Linearity

- A linear classifier in a higher dimensional feature space is a non-linear classifier in the original space
- Computing a non-linear kernel is often better computationally than calculating the corresponding dot product in the high dimension feature space
- ► Thus, kernels allow us to efficiently learn non-linear classifiers

Linear Classifiers in High Dimension

 $\begin{array}{cccc} \Re^2 & \longrightarrow & \Re^3 \\ (x_1, x_2) & \longmapsto & (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \end{array}$

Example: Polynomial Kernel

$$\begin{aligned} (\mathbf{f}(\boldsymbol{x}_t) \cdot \mathbf{f}(\boldsymbol{x}_s) + 1)^2 &= ([x_{t,1}, x_{t,2}] \cdot [x_{s,1}, x_{s,2}] + 1)^2 \\ &= (x_{t,1}x_{s,1} + x_{t,2}x_{s,2} + 1)^2 \\ &= (x_{t,1}x_{s,1})^2 + (x_{t,2}x_{s,2})^2 + 2(x_{t,1}x_{s,1}) + 2(x_{t,2}x_{s,2}) \\ &+ 2(x_{t,1}x_{t,2}x_{s,1}x_{s,2}) + (1)^2 \end{aligned}$$

which equals:

 $[(x_{t,1})^2, (x_{t,2})^2, \sqrt{2}x_{t,1}, \sqrt{2}x_{t,2}, \sqrt{2}x_{t,1}x_{t,2}, 1] + [(x_{s,1})^2, (x_{s,2})^2, \sqrt{2}x_{s,1}, \sqrt{2}x_{s,2}, \sqrt{2}x_{s,1}x_{s,2}, 1]$

Popular Kernels

Polynomial kernel

$$\phi(\boldsymbol{x}_t, \boldsymbol{x}_s) = (\mathbf{f}(\boldsymbol{x}_t) \cdot \mathbf{f}(\boldsymbol{x}_s) + 1)^d$$

 Gaussian radial basis kernel (infinite feature space representation!)

$$\phi(\boldsymbol{x}_t, \boldsymbol{x}_s) = exp(rac{-||\mathbf{f}(\boldsymbol{x}_t) - \mathbf{f}(\boldsymbol{x}_s)||^2}{2\sigma})$$

String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

► Tree kernels [Collins and Duffy 2002]

Structured Learning

- \blacktriangleright Sometimes our output space ${\mathcal Y}$ is not simply a category
- Examples:
 - **Parsing**: for a sentence x, \mathcal{Y} is the set of possible parse trees
 - Sequence tagging: for a sentence x, Y is the set of possible tag sequences, e.g., part-of-speech tags, named-entity tags
 - ▶ Machine translation: for a source sentence *x*, *Y* is the set of possible target language sentences
- Can't we just use our multiclass learning algorithms?
- ► In all the cases, the size of the set Y is exponential in the length of the input x
- It is often non-trivial to solve our learning algorithms in such cases

Perceptron

Training data:
$$\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}$$

1. $\mathbf{w}^{(0)} = 0; i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $\mathbf{y}' = \arg \max_{\mathbf{y}'} \mathbf{w}^{(i)} \cdot \mathbf{f}(x_t, \mathbf{y}')$ (**)
5. if $\mathbf{y}' \neq \mathbf{y}_t$
6. $\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(x_t, y_t) - \mathbf{f}(x_t, \mathbf{y}')$
7. $i = i + 1$
8. return \mathbf{w}^i

(**) Solving the argmax requires a search over an exponential space of outputs!

Large-Margin Classifiers

Online (MIRA):

Batch (SVMs): Training data: $T = \{(x_t, y_t)\}_{t=1}^{|T|}$ 1. $\mathbf{w}^{(0)} = 0; i = 0$ min $\frac{1}{2} ||\mathbf{w}||^2$ 2. for *n* : 1..*N* 3. for t: 1...Tsuch that: 4. $\mathbf{w}^{(i+1)} = \arg\min_{\mathbf{w}^*} \|\mathbf{w}^* - \mathbf{w}^{(i)}\|$ such that: $\mathbf{w} \cdot \mathbf{f}(x_t, y_t) - \mathbf{w} \cdot \mathbf{f}(x_t, y') > 1$ $\mathbf{w} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathbf{w} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}') \geq 1$ $\forall u' \in \overline{\mathcal{Y}}_t$ (**) $\forall (\boldsymbol{x}_t, \boldsymbol{y}_t) \in \mathcal{T} \text{ and } \boldsymbol{y}' \in \overline{\mathcal{Y}}_t \ (**)$ i = i + 15 6. return wⁱ

(**) There are exponential constraints in the size of each input!!

Factor the Feature Representations

- We can make an assumption that our feature representations factor relative to the output
- Example:
 - Context Free Parsing:

$$\mathbf{f}(oldsymbol{x},oldsymbol{y}) = \sum_{A
ightarrow BC \in oldsymbol{y}} \mathbf{f}(oldsymbol{x},A
ightarrow BC)$$

Sequence Analysis – Markov Assumptions:

$$\mathbf{f}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{|\boldsymbol{y}|} \mathbf{f}(\boldsymbol{x}, y_{i-1}, y_i)$$

These kinds of factorizations allow us to run algorithms like CKY and Viterbi to compute the argmax function

Structured Perceptron

- Exactly like original perceptron
- Except now the argmax function uses a factored feature representation
- All of the original analysis for the multiclass perceptron carries over!!

Structured SVMs

min
$$\frac{1}{2}||\mathbf{w}||^2$$

such that:

$$oldsymbol{w} \cdot oldsymbol{\mathsf{f}}(oldsymbol{x}_t,oldsymbol{y}_t) - oldsymbol{w} \cdot oldsymbol{\mathsf{f}}(oldsymbol{x}_t,oldsymbol{y}_t) \geq \mathcal{L}(oldsymbol{y}_t,oldsymbol{y}')$$

 $orall (oldsymbol{x}_t,oldsymbol{y}_t) \in \mathcal{T} ext{ and } oldsymbol{y}' \in ar{\mathcal{Y}}_t ext{ (**)}$

- Still have an exponential # of constraints
- Feature factorizations also allow for solutions
 - Maximum Margin Markov Networks (Taskar et al. '03)
 - Structured SVMs (Tsochantaridis et al. '04)
- ► Note: Old fixed margin of 1 is now a fixed loss L(yt, y') between two structured outputs

Online Structured SVMs (or Online MIRA)

Fraining data:
$$\mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$$

1. $\mathbf{w}^{(0)} = 0; i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. $\mathbf{w}^{(i+1)} = \arg\min_{\mathbf{w}^*} \|\mathbf{w}^* - \mathbf{w}^{(i)}\|$
such that:
 $\mathbf{w} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathbf{w} \cdot \mathbf{f}(\boldsymbol{x}_t, \boldsymbol{y}') \ge \mathcal{L}(\boldsymbol{y}_t, \boldsymbol{y}')$
 $\forall \boldsymbol{y}' \in \bar{\mathcal{Y}}_t \text{ and } \boldsymbol{y}' \in \text{k-best}(\boldsymbol{x}_t, \mathbf{w}^{(i)}) (**)$
5. $i = i + 1$

- 6. return **w**ⁱ
 - k-best(x_t) is set of outputs with highest scores using weight vector w⁽ⁱ⁾
 - ▶ Simple Solution only consider outputs $y' \in \bar{\mathcal{Y}}_t$ that currently have highest score

Main Points of Lecture

- Feature representations
- Choose feature weights, w, to maximize some function (min error, max margin)
- Batch learning (SVMs) versus online learning (perceptron, MIRA)
- Linear versus Non-linear classifiers
- Structured Learning

References and Further Reading

- A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
 A maximum entropy approach to natural language processing. *Computational Linguistics*, 22(1).
- P. M. Camerini, L. Fratta, and F. Maffioli. 1980. The k best spanning arborescences of a network. *Networks*, 10(2):91–110.
- Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.
- M. Collins and N. Duffy. 2002. New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In Proc. ACL.
- M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In *Proc. EMNLP*.
- K. Crammer and Y. Singer. 2001.

On the algorithmic implementation of multiclass kernel based vector machines. JMLR.

► K. Crammer and Y. Singer. 2003.

Ultraconservative online algorithms for multiclass problems. JMLR.

- K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003. Online passive aggressive algorithms. In *Proc. NIPS*.
- K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006. Online passive aggressive algorithms. JMLR.
- J. Edmonds. 1967. Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:233–240.
- J. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proc. COLING.
- Y. Freund and R.E. Schapire. 1999. Large margin classification using the perceptron algorithm. *Machine Learning*, 37(3):277–296.
- T. Joachims. 2002. Learning to Classify Text using Support Vector Machines. Kluwer.
- D. Klein and C. Manning. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In Proc. ACL.
- T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007. Structured prediction models via the matrix-tree theorem. In Proc. EMNLP.

- J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML.
- H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002. Classification with string kernels. *Journal of Machine Learning Research*.
- A. McCallum, D. Freitag, and F. Pereira. 2000. Maximum entropy Markov models for information extraction and segmentation. In *Proc. ICML*.
- R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proc EACL.
- R. McDonald and G. Satta. 2007. On the complexity of non-projective data-driven dependency parsing. In Proc. IWPT.
- R. McDonald, K. Crammer, and F. Pereira. 2005. Online large-margin training of dependency parsers. In Proc. ACL.
- K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001. An introduction to kernel-based learning algorithms. *IEEE Neural Networks*, 12(2):181–201.
- M.A. Paskin. 2001.

Cubic-time parsing and learning algorithms for grammatical bigram models. Technical Report UCB/CSD-01-1148, Computer Science Division, University of California Berkeley.

- K. Sagae and A. Lavie. 2006. Parser combination by reparsing. In Proc. HLT/NAACL.
- ▶ F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In *Proc. HLT/NAACL*, pages 213–220.
- N. Smith and J. Eisner. 2005. Guiding unsupervised grammar induction using contrastive estimation. In Working Notes of the International Joint Conference on Artificial Intelligence Workshop on Grammatical Inference Applications.
- D.A. Smith and N.A. Smith. 2007. Probabilistic models of nonprojective dependency trees. In Proc. EMNLP.
- C. Sutton and A. McCallum. 2006. An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar, editors, *Introduction to Statistical Relational Learning*. MIT Press.
- R.E. Tarjan. 1977. Finding optimum branchings. Networks, 7:25–35.
- B. Taskar, C. Guestrin, and D. Koller. 2003.

Max-margin Markov networks. In Proc. NIPS.

B. Taskar. 2004.

Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis, Stanford.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector learning for interdependent and structured output spaces. In Proc. ICML.

W.T. Tutte. 1984.

Graph Theory. Cambridge University Press.

▶ D. Yuret. 1998.

Discovery of linguistic relations using lexical attraction. Ph.D. thesis, MIT.