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From Last Lecture

Formal Conditions on Dependency Graphs

Last Lecture
» For a dependency graph G = (V, A)
With label set L= {/1,..., .}

v

v

G is (weakly) connected:
s fijeV, o
G is acyclic:

v

» If i — j, then not j —* i.

v

G obeys the single-head constraint:
» If i — j, then not i/ — j, for any /" # i.

v

G is projective:
» If i — j, then i —* /, for any i’ such that i</ <j or j<i' <Ii.
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From Last Lecture

Dependency Graphs as Trees

» Consider a dependency graph G = (V/, A) satisfying:
» G is (weakly) connected:
s Ifi eV, i
» G obeys the single-head constraint:
» If i — j, then not i’ — j, for any i’ # i.
» G obeys the single-root constraint:
» If 3/ such that i — j, then 3i such that i — j/, for any j' # j
> wp = root is always this node
» This dependency graph is by definition a tree

» For the rest of the course we assume that all dependency
graphs are trees
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From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head

obj pc

nmod sbj nmod |[nmod nmod

o T

Economic news had little effect on financial markets
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From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head, single-root

P
pred obj pc

nmod sbj nmod |[nmod nmod

o T

root Economic news had little effect on financial markets
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Introduction

Overview of the Course

Dependency parsing (Joakim)
Machine learning methods (Ryan)
Transition-based models (Joakim)
Graph-based models (Ryan)

Loose ends (Joakim, Ryan):

» Other approaches
» Empirical results
» Available software

vV Yy Vv VY
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Introduction

Data-Driven Parsing

Data-Driven — Machine Learning
Parameterize a model
Supervised: Learn parameters from annotated data

Unsupervised: Induce parameters from a large corpora

vV vy Vv VY

Data-Driven vs. Grammar-driven

» Can parse all sentences vs. generate specific language
» Data-driven = grammar of X*
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Introduction

Lecture 2: Qutline

» Feature Representations
» Linear Classifiers
» Perceptron
» Large-Margin Classifiers (SVMs, MIRA)
» Others
» Non-linear Classifiers
» K-NNs and Memory-based Learning
» Kernels
» Structured Learning
» Structured Perceptron
» Large-Margin Perceptron
» Others
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Introduction

Important Message

» This lecture contains a lot of details

» Not important if you do not follow all proofs and maths
» What is important
» Understand basic representation of data — features
» Understand basic goal and structure of classifiers
» Understand important distinctions: linear vs. non-linear, binary
vs. multiclass, multiclass vs. structured, etc.
» Interested in ML for NLP

» Check out afternoon course “Machine learning methods for
NLP”
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Feature Representations

Feature Representations

> Input: ¢z € X

» e.g., document or sentence with some words @ = wy ... w,, or
a series of previous actions

» Output: y € Y

» e.g., dependency tree, document class, part-of-speech tags,
next parsing action

» We assume a mapping from x to a high dimensional feature
vector

» f(x): X - R™

» But sometimes it will be easier to think of a mapping from an
input/output pair to a feature vector

> flz,y) : X xY - R"

» For any vector v € R™, let v; be the j value
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Feature Representations

Examples

» x is a document

fi(x) = 1 if & contains the word “interest”
/ "1 0 otherwise

fi(x) = The percentage of words than contain punctuation

» x is a word and y is a part-of-speech tag

1 if x = "bank” and y = Verb
0 otherwise

fi(z,y) = {
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Feature Representations

Example 2

fo(x) = 1 if  contains the word “John”

1= 0 otherwise
_J 1 if & contains the word “Mary"

hi(=) = { 0 otherwise
_ 1 if & contains the word “Harry”

fa(x) = { 0 otherwise
f3(a) = 1 if @ contains the word “likes”

BT 0 otherwise

» x=John likes Mary — f(x) =[1 10 1]
» xz=Mary likes John — f(x) =[1 10 1]
» x=Harry likes Mary — f(x) =[011 1]
» x=Harry likes Harry — f(z) =[00 1 1]
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Linear Classifiers

Linear Classifiers

» Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

» Let w € R™ be a high dimensional weight vector

» If we assume that w is known, then we can define two kinds
of linear classifiers

» Reminder:
v-v':ZvjxvjeR
J
» Binary Classification: ) = {—1,1}

y = sign(w - f(z))
» Multiclass Classification: ) = {0,1,..., N}

y = argmax w - f(z,y)
y
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Linear Classifiers

Binary Linear Classifier

Divides all points:
y = sign(w - f(z))
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Linear Classifiers

Multiclass Linear Classifier
Defines regions of space:

y =argmax w - f(z,y)
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Linear Classifiers

Separability

> A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable
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Linear Classifiers

Supervised Learning

> Input: training examples 7 = {(wt,yt)}gl
» Input: feature representation f
» Output: w that maximizes/minimizes some important
function on the training set
» minimize error (Perceptron, SVMs, Boosting)
» maximize likelihood of data (Logistic Regression, CRFs)
» Assumption: The training data is separable

» Not necessary, just makes life easier
» There is a lot of good work in machine learning to tackle the
non-separable case
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Linear Classifiers

Perceptron

» Minimize error
» Binary classification: Y = {—1,1}

w = arg minz 1 —1[y; = sign(w - f(x))]
W
» Multiclass classification: Y = {0,1,..., N}

w = arg minz 1—1[y; = argmaxw - f(x, y)]
w t Y

| 1 pistrue
Lp] = { 0 otherwise
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Linear Classifiers

Perceptron Learning Algorithm (multiclass)

Training data: 7 = {(a:t,yt)}gl
1. w®=0;i=0

2. forn:1.N

3 fort:1..T

4 Let y' = arg max,, wl) - f(xz:,y')

5. if y' # y:

6. wi*) = wl) 1 f(z,, ) — (1, 9')

7 i=i+1

8. return w'
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Linear Classifiers

Perceptron Learning Algorithm (multiclass)

» Given an training instance (¢, y;), define:
r V=Y - {ye}
» A training set 7 is separable with margin v > 0 if there exists
a vector u with [ju|| = 1 such that:

u-f(ze,y:) —u-f(ze,y') >y

for all y' € Yt and lJul| = juJ2

» Assumption: the training set is separable with margin
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Linear Classifiers

Perceptron Learning Algorithm (multiclass)

» Theorem: For any training set separable with a margin of ~,
the following holds for the perceptron algorithm:
RZ

Number of training errors < —
g

where R > ||f(z¢, y:) — f(x¢, y')|| for all (x¢,y:) € T and
y €V

» Thus, after a finite number of training iterations, the error on
the training set will converge to zero

> Let’s prove it! (proof taken from Collins '02)
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Linear Classifiers

Perception Learning Algorithm (multiclass)

Training data: T = {(w¢, )} 7] » w(k=1) are the weights before k"
L wO—o =0 mistake
g f°rf:r :tl:"l"\"T > Stl.;,ppose kth mistake made at the
4, Let y’ = arg max, s w() . f(xe,y’) ™" example, (mt7 yt)
5. ify' Zyr » o =argmax, wk—1 . f(x,y)
6. wl D) = wl) 4 (@, ye) — f(ze, y') > o Y
7 i=i+1 Y # yr
8 return w' > wk) — wlk=1) 4 f(m':7 yt) _ f(m':7 y/)
> Now: u- w) =u-wk=D fu. (f(@, ye) — f(@e, ') > u-wlk—D 4 5
> Now: w(® =0 and u-w(® =0, by induction on k, u-wl¥) > (k — 1)y
» Now: since u-w(k) < |jul| x ||[w®)|| and ||u]| =1 then ||w(¥)|| > (k — 1)y
> Now:
WP = WD 4 IR, ye) — fe, )]+ 20D - (R, ye) — f(e, o)
WO < w2 4 R

(since R > ||f(ze, yt) — f(ze, )|
and w1 - f(a, yr) — wD L f(xy, ') < 0)
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Linear Classifiers

Perception Learning Algorithm (multiclass)

» We have just shown that |[w(¥)|| > (k — 1)y and
W < |lwlk=D]]2 + R?

» By induction on k and since w(®) =0 and ||w(®|]2 =0
[w|? < (k - 1)R?
» Therefore,
(k= 1)%92 < W2 < (k - DR?

» and solving for k
R2
k—1< —
i

» Therefore the number of errors is bounded!
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Margin
Training Testing

Denote the
value of the
margin by ~y

Introduction to Data-Driven Dependency Par:



Linear Classifiers

Margin

» Intuitively maximizing margin makes sense

» More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2

EX —F/FV—————
72 < |T|

» Perceptron: we have shown that:

» If a training set is separable by some margin, the perceptron
will find a w that separates the data
» However, it does not pick a w to maximize the margin!
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Linear Classifiers

Max Margin = Min Norm

Let v >0
Max Margin: Min Norm:
e, min 3 Iw|’?
such that: = such that:
ye(w - f(xz:)) > v ye(w - f(ze)) > 1
Y(xt,y:) €T V(xt,y:) €T

» ||w|| is bound since scaling trivially produces larger margin

ye([Bw] - f(x+)) > B, for some 3 > 1

> Instead of fixing ||w|| we fix the margin v =1
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Linear Classifiers

Support Vector Machines

Binary: Multiclass:
1 o1
min §||w||2 min EHWHQ
such that: such that:
ye(w - f(zy)) > 1 w-f(z,y:) —w-flae,y') > 1
V(zt,y:) €T Y(xe,y:) € T and y' € Yy

Both are quadratic programming problems — a well known convex
optimization problem
Can be solved with out-of-the-box algorithms
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Linear Classifiers

Support Vector Machines

Binary:
1 5
min §||w||
such that:

ye(w-f(x)) > 1

V(xt, yt) € T

» Problem: Sometimes |7 | is far too large

» Thus the number of constraints might
make solving the quadratic programming
problem very difficult

» Most common technique: Sequential
Minimal Optimization (SMO)
» Sparse: solution only depends on support
vectors
T+
G @ +
- +
@ \@® +
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Linear Classifiers

Margin Infused Relaxed Algorithm (MIRA)

» Another option — maximize margin using an online algorithm
» Batch vs. Online

» Batch — update parameters based on entire training set (e.g.,
SVMs)

» Online — update parameters based on a single training instance
at a time (e.g., Perceptron)

» MIRA can be thought of as a max-margin perceptron or an
online SVM
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MIRA (multiclass)
Online (MIRA):

Batch (SVMs): 17|

Training data: 7 = {(@¢, Y+) }+21
L. w®=0;i=0

1 5
min §||W|| 2. forn:1.N
3. fort:1..T

such that: 4 w(i+1) = arg minw* Hw* _ w(’)H
, such that:

w2 e ye)—wh(@e y') 2 1 w-f(z, y:) —w-f(ze,y') > 1
/ 5 Vy' S )_)t

V(xt,y:) €T and y' € Y 5. i— a1

6. return w'

» MIRA has much smaller optimizations with only | V|
constraints

» Cost: sub-optimal optimization

Introduction to Data-Driven Dependency Parsing 29(50)



Linear Classifiers

Summary

What we have covered

» Feature-based representations
» Linear Classifiers

» Perceptron
» Large-Margin — SVMs (batch) and MIRA (online)

What is next

» Non-linear classifiers
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Non-Linear Classifiers

Non-Linear Classifiers

» Some data sets require more than a linear classifier to be
correctly modeled
> A lot of models out there

» K-Nearest Neighbours
» Decision Trees

» Kernels

» Neural Networks

» Will only discuss a couple due to time constraints
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K-Nearest Neighbours

» Simplest form: for a given test point x, find k-nearest
neighbours in training set

» Neighbours vote for classification

» Distance is Euclidean distance

o) = \/Z(fj(mt) ~ ()’

. . - +
No linear classifier can - ++<‘B —+
- Point of interest
correctly label data set. But -—_% ‘_lﬁwd ostive Comectly
3-nearest neighbours does. _=-— +
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Non-Linear Classifiers

K-Nearest Neighbours

» A training set 7, distance function d, and value K define a
non-linear classification boundary

Approx 3-NN decision boundary
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Non-Linear Classifiers

K-Nearest Neighbours

» K-NN is often called a lazy learning algorithm or memory
based learning (MBL)

» K-NN generalized in the Tilburg Memory Based Learning
Package
» Different distance functions
» Different voting schemes for classification
» Tie-breaking
» Memory representations
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Non-Linear Classifiers

Kernels

> A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

d(xr, x,) €R

» Mercer’'s Theorem: for any kernal ¢, there exists an f, such
that:

¢(@r, x) = (1) - f(z/)
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(mt,yr)}'ﬂ
w® =0; i=0
forn: 1..N
fort:1..T
Let y = argmax
ify#ye
witD) = w() 1 (@, ye) — f(e, y)
i=i+1
return w'

Yy w(l) . f(mtv y)

ONO OO

» Each feature function f(x¢,y;) is added and f(x¢,y) is
subtracted to w say o, ; times

> Q¢ is the # of times during learning label y is predicted for
example t

» Thus,
w= Z oy t[f(ze, ye) — F(ze, y)]

t’y
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

» We can re-write the argmax function as:

yx = argmaxw() . f(z,, y*)
A

= argmaxzay,t[f(whyt) - f(wt?y)] : f(why*)
y* ty

= argmax Y ay[f(@e,ye) - f(@e, y") — f(@e,y) - f(@e,y7)]
y* ty

= argygrlaxz ay f[0((®e, Y1), (22, 47)) = (24, y), (22, 47))]

ty

» We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(w@¢, yt)}ltg
1. Vy,tsetay:=0
forn:1..N
fort:1..T

2
3
4. Let y* = argmaxy« >, , oy t[0((@t, ), (=1, ¥*)) — d((2e, y), (26, ¥*))]
5 if y* # yt

6 ay*,t:ay*,t—l—l

» Given a new instance

Y= arg max Y ageld((@eye), (2, y7)—((2e, y), (2,y7))]

ty

» But it seems like we have just complicated things???
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Non-Linear Classifiers

Kernels = Tractable Non-Linearity

» A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

» Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

» Thus, kernels allow us to efficiently learn non-linear classifiers
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Non-Linear Classifiers

Linear Classifiers in High Dimension

1

05 R°
2
0 (o}
(o]
O%
-05
fé"%
-1
=1 -05

R — R

(331,372) L (Zl,zz,z3)=($%,\/§$1$2,$§)
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Non-Linear Classifiers

Example: Polynomial Kernel

> f(x) cRM, d >2

> d)(mt, a}s) = (f(a)’t) . f(ms) + 1)d
» O(M) to calculate for any d!!

» But in the original feature space (primal space)
» Consider d =2, M =2, and f(x;) = [x¢,1, X¢,2]

([xe,1, Xe,2] - [xs,1, Xs,2] + 1)?
= (Xt,lxs,l + Xt 2Xs2 + 1)2
= (xe1%61) F (xe.2%5,2)% + 2(xe.1%5.1) + 2(xe.2%s.2)

+2(x¢,1X¢,2Xs,1Xs,2) + (1)2

(F(aee) - f(s) + 1)

which equals:

[(xe,1)% (xe.2)% V2xe,1, V2xe.2, V2xe,1%¢,2, 1] - [(x6,1)% (x5,2)%0 V25,1, V255 2, V2X6,1%5,2, 1]
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Non-Linear Classifiers

Popular Kernels

» Polynomial kernel

O(@e, ws) = (F(ae) - f(as) + 1)

» Gaussian radial basis kernel (infinite feature space
representation!)

—|[|f(ze) — f(-’Bs)Ilz)
20

¢, T5) = exp(

» String kernels [Lodhi et al. 2002, Collins and Duffy 2002]
» Tree kernels [Collins and Duffy 2002]
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Structured Learning

Structured Learning

» Sometimes our output space ) is not simply a category
» Examples:
» Parsing: for a sentence x, ) is the set of possible parse trees
» Sequence tagging: for a sentence x, ) is the set of possible
tag sequences, e.g., part-of-speech tags, named-entity tags
» Machine translation: for a source sentence x, ) is the set of
possible target language sentences
» Can't we just use our multiclass learning algorithms?

» In all the cases, the size of the set ) is exponential in the
length of the input «

» It is often non-trivial to solve our learning algorithms in such
cases
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Structured Learning

Perceptron

Training data: 7 = {(a:t,yt)}gl
1L w®=0;i=0
2. forn:1.N
3 fort:1.T
4 Let y = arg max,, w) - f(x,, y') (¥*)
5. if y' # y:
6. wi) = wl) 1 f(z,, ;) — (s, 9')
7 i=i+1
8. return w’

(**) Solving the argmax requires a search over an exponential
space of outputs!
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Structured Learning

Large-Margin Classifiers

Online (MIRA):
Batch (SVMs): Training data: 7 = {(azzt,yt)}lg1
1 , 1. w®=0;i=0
min §||W|| 2. forn:1..N
3. fort:1..T
such that: 4 wlitl) — arg minw* HW* —_ W(i)H

such that:
w - f(wt’ yt) —w- f(wtv yl) > 1
vy € 9 (*)
i=i+1
return w'

W'f(mh yt)_w'f(xh yl) 2 1

Y(xe,y:) € T and 3y € V; (¥*)

oo

(**) There are exponential constraints in the size of each input!!

Introduction to Data-Driven Dependency Parsing 45(50)



Structured Learning

Factor the Feature Representations

» We can make an assumption that our feature representations
factor relative to the output
» Example:
» Context Free Parsing:

flz,y) = Z f(x, A — BC)

A—BCey
» Sequence Analysis — Markov Assumptions:

ly|

f(z,y) = > f(x,yi1,y)

i=1

» These kinds of factorizations allow us to run algorithms like
CKY and Viterbi to compute the argmax function
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Structured Learning

Structured Perceptron

» Exactly like original perceptron

» Except now the argmax function uses a factored feature
representation

» All of the original analysis for the multiclass perceptron carries

over!l
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Structured Learning

Structured SVMs

1
min §||w||2
such that:
W - f(mh yt) —W- f(mh y/) 2 £(_yl‘.‘7.y/)
Y(xs,y:) €T and y' € V; (¥%)

» Still have an exponential # of constraints
» Feature factorizations also allow for solutions
» Maximum Margin Markov Networks (Taskar et al. '03)
» Structured SVMs (Tsochantaridis et al. '04)
» Note: Old fixed margin of 1 is now a fixed loss L(yz, y’)
between two structured outputs
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Structured Learning

Online Structured SVMs (or Online MIRA)

Training data: 7 = {(wt,yt)}gl
1. w0 = 0;/1=0
2. forn:1.N
3. fort:1..T
4 wlith) = arg min,, Hw* — w(i)“
such that:
wf(@e, ye) —w-flze,y') = L(ye.y')
Vy' € Y and oy € k-best(z;, w()) (*¥*)
5. i=i+1
6. return w'

> k-best(x;) is set of outputs with highest scores using weight
vector w(/)

» Simple Solution — only consider outputs y’ € ), that currently
have highest score
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Wrap Up

Main Points of Lecture

v

Feature representations

Choose feature weights, w, to maximize some function (min
error, max margin)

v

v

Batch learning (SVMs) versus online learning (perceptron,
MIRA)

Linear versus Non-linear classifiers

v

v

Structured Learning
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