
Introduction to Data-Driven
Dependency Parsing

Introductory Course, ESSLLI 2007

Ryan McDonald1 Joakim Nivre2

1Google Inc., New York, USA
E-mail: ryanmcd@google.com

2Uppsala University and Växjö University, Sweden
E-mail: nivre@msi.vxu.se

Introduction to Data-Driven Dependency Parsing 1(50)

From Last Lecture

Formal Conditions on Dependency Graphs

Last Lecture

◮ For a dependency graph G = (V ,A)

◮ With label set L = {l1, . . . , l|L|}

◮ G is (weakly) connected:
◮ If i , j ∈ V , i ↔∗ j .

◮ G is acyclic:
◮ If i → j , then not j →∗ i .

◮ G obeys the single-head constraint:
◮ If i → j , then not i ′ → j , for any i ′ 6= i .

◮ G is projective:
◮ If i → j , then i →∗ i ′, for any i ′ such that i < i ′< j or j < i ′< i .

Introduction to Data-Driven Dependency Parsing 2(50)

From Last Lecture

Dependency Graphs as Trees

◮ Consider a dependency graph G = (V ,A) satisfying:
◮ G is (weakly) connected:

◮ If i , j ∈ V , i ↔∗ j .

◮ G obeys the single-head constraint:
◮ If i → j , then not i ′ → j , for any i ′ 6= i .

◮ G obeys the single-root constraint:
◮ If ∄i such that i → j , then ∃i such that i → j ′, for any j ′ 6= j
◮ w0 = root is always this node

◮ This dependency graph is by definition a tree

◮ For the rest of the course we assume that all dependency
graphs are trees

Introduction to Data-Driven Dependency Parsing 3(50)

From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head

Economic news had little effect on financial markets .

obj

sbjnmod nmod nmod

pc

nmod

Introduction to Data-Driven Dependency Parsing 4(50)

From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head, single-root

root Economic news had little effect on financial markets .

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Introduction to Data-Driven Dependency Parsing 4(50)

Introduction

Overview of the Course

◮ Dependency parsing (Joakim)

◮ Machine learning methods (Ryan)

◮ Transition-based models (Joakim)

◮ Graph-based models (Ryan)

◮ Loose ends (Joakim, Ryan):
◮ Other approaches
◮ Empirical results
◮ Available software

Introduction to Data-Driven Dependency Parsing 5(50)

Introduction

Data-Driven Parsing

◮ Data-Driven → Machine Learning

◮ Parameterize a model

◮ Supervised: Learn parameters from annotated data

◮ Unsupervised: Induce parameters from a large corpora

◮ Data-Driven vs. Grammar-driven
◮ Can parse all sentences vs. generate specific language
◮ Data-driven = grammar of Σ∗

Introduction to Data-Driven Dependency Parsing 6(50)

Introduction

Lecture 2: Outline

◮ Feature Representations

◮ Linear Classifiers
◮ Perceptron
◮ Large-Margin Classifiers (SVMs, MIRA)
◮ Others

◮ Non-linear Classifiers
◮ K-NNs and Memory-based Learning
◮ Kernels

◮ Structured Learning
◮ Structured Perceptron
◮ Large-Margin Perceptron
◮ Others

Introduction to Data-Driven Dependency Parsing 7(50)

Introduction

Important Message

◮ This lecture contains a lot of details

◮ Not important if you do not follow all proofs and maths

◮ What is important
◮ Understand basic representation of data – features
◮ Understand basic goal and structure of classifiers
◮ Understand important distinctions: linear vs. non-linear, binary

vs. multiclass, multiclass vs. structured, etc.

◮ Interested in ML for NLP
◮ Check out afternoon course“Machine learning methods for

NLP”

Introduction to Data-Driven Dependency Parsing 8(50)

Feature Representations

Feature Representations

◮ Input: x ∈ X
◮ e.g., document or sentence with some words x = w1 . . . wn, or

a series of previous actions

◮ Output: y ∈ Y
◮ e.g., dependency tree, document class, part-of-speech tags,

next parsing action

◮ We assume a mapping from x to a high dimensional feature
vector

◮ f(x) : X → Rm

◮ But sometimes it will be easier to think of a mapping from an
input/output pair to a feature vector

◮ f(x, y) : X × Y → Rm

◮ For any vector v ∈ Rm, let vj be the j th value

Introduction to Data-Driven Dependency Parsing 9(50)

Feature Representations

Examples

◮ x is a document

fj(x) =

{

1 if x contains the word“interest”
0 otherwise

fj(x) = The percentage of words than contain punctuation

◮ x is a word and y is a part-of-speech tag

fj(x,y) =

{

1 if x = “bank”and y = Verb
0 otherwise

Introduction to Data-Driven Dependency Parsing 10(50)

Feature Representations

Example 2

f0(x) =



1 if x contains the word “John”
0 otherwise

f1(x) =



1 if x contains the word “Mary”
0 otherwise

f2(x) =



1 if x contains the word “Harry”
0 otherwise

f3(x) =



1 if x contains the word “likes”
0 otherwise

◮ x=John likes Mary → f(x) = [1 1 0 1]

◮ x=Mary likes John → f(x) = [1 1 0 1]

◮ x=Harry likes Mary → f(x) = [0 1 1 1]

◮ x=Harry likes Harry → f(x) = [0 0 1 1]

Introduction to Data-Driven Dependency Parsing 11(50)

Linear Classifiers

Linear Classifiers

◮ Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

◮ Let w ∈ Rm be a high dimensional weight vector
◮ If we assume that w is known, then we can define two kinds

of linear classifiers
◮ Reminder:

v · v′ =
∑

j

vj × v′j ∈ R

◮ Binary Classification: Y = {−1, 1}

y = sign(w · f(x))

◮ Multiclass Classification: Y = {0, 1, . . . , N}

y = argmax
y

w · f(x, y)

Introduction to Data-Driven Dependency Parsing 12(50)

Linear Classifiers

Binary Linear Classifier

Divides all points:
y = sign(w · f(x))

Introduction to Data-Driven Dependency Parsing 13(50)

Linear Classifiers

Multiclass Linear Classifier
Defines regions of space:

y = arg max
y

w · f(x,y)

Introduction to Data-Driven Dependency Parsing 14(50)

Linear Classifiers

Separability

◮ A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable

Introduction to Data-Driven Dependency Parsing 15(50)

Linear Classifiers

Supervised Learning

◮ Input: training examples T = {(xt ,yt)}
|T |
t=1

◮ Input: feature representation f

◮ Output: w that maximizes/minimizes some important
function on the training set

◮ minimize error (Perceptron, SVMs, Boosting)
◮ maximize likelihood of data (Logistic Regression, CRFs)

◮ Assumption: The training data is separable
◮ Not necessary, just makes life easier
◮ There is a lot of good work in machine learning to tackle the

non-separable case

Introduction to Data-Driven Dependency Parsing 16(50)

Linear Classifiers

Perceptron

◮ Minimize error
◮ Binary classification: Y = {−1, 1}

w = arg min
w

∑

t

1 − 1[yt = sign(w · f(xt))]

◮ Multiclass classification: Y = {0, 1, . . . , N}

w = arg min
w

∑

t

1 − 1[yt = arg max
y

w · f(xt , y)]

1[p] =

{

1 p is true
0 otherwise

Introduction to Data-Driven Dependency Parsing 17(50)

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

Training data: T = {(xt ,yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg maxy′ w(i) · f(xt ,y

′)
5. if y

′ 6= yt

6. w(i+1) = w(i) + f(xt ,yt) − f(xt ,y
′)

7. i = i + 1
8. return wi

Introduction to Data-Driven Dependency Parsing 18(50)

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

◮ Given an training instance (xt ,yt), define:
◮ Ȳt = Y − {yt}

◮ A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · f(xt ,yt) − u · f(xt ,y
′) ≥ γ

for all y
′ ∈ Ȳt and ||u|| =

√

∑

j u
2
j

◮ Assumption: the training set is separable with margin γ

Introduction to Data-Driven Dependency Parsing 19(50)

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

◮ Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

Number of training errors ≤
R2

γ2

where R ≥ ||f(xt ,yt) − f(xt ,y
′)|| for all (xt ,yt) ∈ T and

y
′ ∈ Ȳt

◮ Thus, after a finite number of training iterations, the error on
the training set will converge to zero

◮ Let’s prove it! (proof taken from Collins ’02)

Introduction to Data-Driven Dependency Parsing 20(50)

Linear Classifiers

Perception Learning Algorithm (multiclass)
Training data: T = {(xt , yt)}

|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg max

y′ w(i) · f(xt , y
′)

5. if y
′ 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y
′)

7. i = i + 1

8. return wi

◮ w (k−1) are the weights before kth

mistake

◮ Suppose kth mistake made at the
tth example, (xt , yt)

◮ y
′ = arg max

y′ w(k−1) · f(xt , y
′)

◮ y
′ 6= yt

◮ w (k) = w(k−1) + f(xt , yt)− f(xt , y
′)

◮ Now: u · w (k) = u · w(k−1) + u · (f(xt , yt) − f(xt , y
′)) ≥ u · w(k−1) + γ

◮ Now: w(0) = 0 and u · w(0) = 0, by induction on k, u · w(k) ≥ (k − 1)γ

◮ Now: since u · w(k) ≤ ||u|| × ||w(k)|| and ||u|| = 1 then ||w(k)|| ≥ (k − 1)γ

◮ Now:

||w(k)||2 = ||w(k−1)||2 + ||f(xt , yt) − f(xt , y
′)||2 + 2w(k−1) · (f(xt , yt) − f(xt , y

′))

||w(k)||2 ≤ ||w(k−1)||2 + R2

(since R ≥ ||f(xt , yt) − f(xt , y
′)||

and w(k−1) · f(xt , yt) − w(k−1) · f(xt , y
′) ≤ 0)

Introduction to Data-Driven Dependency Parsing 21(50)

Linear Classifiers

Perception Learning Algorithm (multiclass)

◮ We have just shown that ||w(k)|| ≥ (k − 1)γ and
||w(k)||2 ≤ ||w(k−1)||2 + R2

◮ By induction on k and since w(0) = 0 and ||w(0)||2 = 0

||w(k)||2 ≤ (k − 1)R2

◮ Therefore,

(k − 1)2γ2 ≤ ||w(k)||2 ≤ (k − 1)R2

◮ and solving for k

k − 1 ≤
R2

γ2

◮ Therefore the number of errors is bounded!

Introduction to Data-Driven Dependency Parsing 22(50)

Linear Classifiers

Margin

Training Testing

Denote the
value of the
margin by γ

Introduction to Data-Driven Dependency Parsing 23(50)

Linear Classifiers

Margin

◮ Intuitively maximizing margin makes sense

◮ More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ǫ ∝
R2

γ2 × |T |

◮ Perceptron: we have shown that:
◮ If a training set is separable by some margin, the perceptron

will find a w that separates the data
◮ However, it does not pick a w to maximize the margin!

Introduction to Data-Driven Dependency Parsing 24(50)

Linear Classifiers

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||w||≤1

γ

such that:

yt(w · f(xt)) ≥ γ

∀(xt , yt) ∈ T

=

Min Norm:

min
1

2
||w||2

such that:

yt(w · f(xt)) ≥ 1

∀(xt , yt) ∈ T

◮ ||w|| is bound since scaling trivially produces larger margin

yt([βw] · f(xt)) ≥ βγ, for some β ≥ 1

◮ Instead of fixing ||w|| we fix the margin γ = 1

Introduction to Data-Driven Dependency Parsing 25(50)

Linear Classifiers

Support Vector Machines

Binary:

min
1

2
||w||2

such that:

yt(w · f(xt)) ≥ 1

∀(xt ,yt) ∈ T

Multiclass:

min
1

2
||w||2

such that:

w · f(xt ,yt) − w · f(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y
′ ∈ Ȳt

Both are quadratic programming problems – a well known convex
optimization problem
Can be solved with out-of-the-box algorithms

Introduction to Data-Driven Dependency Parsing 26(50)

Linear Classifiers

Support Vector Machines

Binary:

min
1

2
||w||2

such that:

yt(w · f(xt)) ≥ 1

∀(xt ,yt) ∈ T

◮ Problem: Sometimes |T | is far too large

◮ Thus the number of constraints might
make solving the quadratic programming
problem very difficult

◮ Most common technique: Sequential
Minimal Optimization (SMO)

◮ Sparse: solution only depends on support
vectors

Introduction to Data-Driven Dependency Parsing 27(50)

Linear Classifiers

Margin Infused Relaxed Algorithm (MIRA)

◮ Another option – maximize margin using an online algorithm

◮ Batch vs. Online
◮ Batch – update parameters based on entire training set (e.g.,

SVMs)
◮ Online – update parameters based on a single training instance

at a time (e.g., Perceptron)

◮ MIRA can be thought of as a max-margin perceptron or an
online SVM

Introduction to Data-Driven Dependency Parsing 28(50)

Linear Classifiers

MIRA (multiclass)

Batch (SVMs):

min
1

2
||w||2

such that:

w·f(xt , yt)−w·f(xt , y
′) ≥ 1

∀(xt , yt) ∈ T and y
′ ∈ Ȳt

Online (MIRA):

Training data: T = {(xt , yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N

3. for t : 1..T

4. w(i+1) = arg minw*

∥

∥w* − w(i)
∥

∥

such that:
w · f(xt , yt) − w · f(xt , y

′) ≥ 1
∀y

′ ∈ Ȳt

5. i = i + 1
6. return wi

◮ MIRA has much smaller optimizations with only |Ȳt |
constraints

◮ Cost: sub-optimal optimization

Introduction to Data-Driven Dependency Parsing 29(50)

Linear Classifiers

Summary

What we have covered

◮ Feature-based representations

◮ Linear Classifiers
◮ Perceptron
◮ Large-Margin – SVMs (batch) and MIRA (online)

What is next

◮ Non-linear classifiers

Introduction to Data-Driven Dependency Parsing 30(50)

Non-Linear Classifiers

Non-Linear Classifiers

◮ Some data sets require more than a linear classifier to be
correctly modeled

◮ A lot of models out there
◮ K-Nearest Neighbours
◮ Decision Trees
◮ Kernels
◮ Neural Networks

◮ Will only discuss a couple due to time constraints

Introduction to Data-Driven Dependency Parsing 31(50)

Non-Linear Classifiers

K-Nearest Neighbours

◮ Simplest form: for a given test point x, find k-nearest
neighbours in training set

◮ Neighbours vote for classification

◮ Distance is Euclidean distance

d(xt ,xr) =

√

∑

j

(fj(xt) − fj(xr))2

No linear classifier can

correctly label data set. But

3-nearest neighbours does.

Introduction to Data-Driven Dependency Parsing 32(50)

Non-Linear Classifiers

K-Nearest Neighbours

◮ A training set T , distance function d , and value K define a
non-linear classification boundary

Introduction to Data-Driven Dependency Parsing 33(50)

Non-Linear Classifiers

K-Nearest Neighbours

◮ K-NN is often called a lazy learning algorithm or memory
based learning (MBL)

◮ K-NN generalized in the Tilburg Memory Based Learning
Package

◮ Different distance functions
◮ Different voting schemes for classification
◮ Tie-breaking
◮ Memory representations

Introduction to Data-Driven Dependency Parsing 34(50)

Non-Linear Classifiers

Kernels

◮ A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

φ(xt ,xr) ∈ R

◮ Mercer’s Theorem: for any kernal φ, there exists an f, such
that:

φ(xt ,xr) = f(xt) · f(xr)

Introduction to Data-Driven Dependency Parsing 35(50)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt , yt)}|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = argmax
y

w(i) · f(xt , y)
5. if y 6= yt

6. w(i+1) = w(i) + f(xt , yt) − f(xt , y)
7. i = i + 1
8. return wi

◮ Each feature function f(xt ,yt) is added and f(xt ,y) is
subtracted to w say αy,t times

◮ αy,t is the # of times during learning label y is predicted for
example t

◮ Thus,
w =

∑

t,y

αy,t [f(xt ,yt) − f(xt ,y)]

Introduction to Data-Driven Dependency Parsing 36(50)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

◮ We can re-write the argmax function as:

y∗ = arg max
y∗

w(i) · f(xt , y
∗)

= arg max
y∗

∑

t,y

αy,t [f(xt , yt) − f(xt , y)] · f(xt , y
∗)

= arg max
y∗

∑

t,y

αy,t [f(xt , yt) · f(xt , y
∗) − f(xt , y) · f(xt , y

∗)]

= arg max
y∗

∑

t,y

αy,t [φ((xt , yt), (xt , y
∗)) − φ((xt , y), (xt , y

∗))]

◮ We can then re-write the perceptron algorithm strictly with
kernels

Introduction to Data-Driven Dependency Parsing 37(50)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt , yt)}|T |
t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y

∗ = argmax
y∗

P

t,y αy,t [φ((xt , yt), (xt , y
∗)) − φ((xt , y), (xt , y

∗))]

5. if y
∗ 6= yt

6. αy∗
,t = αy∗

,t + 1

◮ Given a new instance x

y
∗ = arg max

y∗

∑

t,y

αy,t [φ((xt ,yt), (x,y∗))−φ((xt ,y), (x,y∗))]

◮ But it seems like we have just complicated things???

Introduction to Data-Driven Dependency Parsing 38(50)

Non-Linear Classifiers

Kernels = Tractable Non-Linearity

◮ A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

◮ Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

◮ Thus, kernels allow us to efficiently learn non-linear classifiers

Introduction to Data-Driven Dependency Parsing 39(50)

Non-Linear Classifiers

Linear Classifiers in High Dimension

Introduction to Data-Driven Dependency Parsing 40(50)

Non-Linear Classifiers

Example: Polynomial Kernel

◮ f(x) ∈ RM , d ≥ 2

◮ φ(xt ,xs) = (f(xt) · f(xs) + 1)d

◮ O(M) to calculate for any d !!

◮ But in the original feature space (primal space)
◮ Consider d = 2, M = 2, and f(xt) = [xt,1, xt,2]

(f(xt) · f(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)
2 + (xt,2xs,2)

2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)
2, (xt,2)

2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1] · [(xs,1)
2, (xs,2)

2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]

Introduction to Data-Driven Dependency Parsing 41(50)

Non-Linear Classifiers

Popular Kernels

◮ Polynomial kernel

φ(xt ,xs) = (f(xt) · f(xs) + 1)d

◮ Gaussian radial basis kernel (infinite feature space
representation!)

φ(xt ,xs) = exp(
−||f(xt) − f(xs)||

2

2σ
)

◮ String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

◮ Tree kernels [Collins and Duffy 2002]

Introduction to Data-Driven Dependency Parsing 42(50)

Structured Learning

Structured Learning

◮ Sometimes our output space Y is not simply a category

◮ Examples:
◮ Parsing: for a sentence x, Y is the set of possible parse trees
◮ Sequence tagging: for a sentence x, Y is the set of possible

tag sequences, e.g., part-of-speech tags, named-entity tags
◮ Machine translation: for a source sentence x, Y is the set of

possible target language sentences

◮ Can’t we just use our multiclass learning algorithms?

◮ In all the cases, the size of the set Y is exponential in the
length of the input x

◮ It is often non-trivial to solve our learning algorithms in such
cases

Introduction to Data-Driven Dependency Parsing 43(50)

Structured Learning

Perceptron

Training data: T = {(xt ,yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y
′ = arg maxy′ w(i) · f(xt ,y

′) (**)
5. if y

′ 6= yt

6. w(i+1) = w(i) + f(xt ,yt) − f(xt ,y
′)

7. i = i + 1
8. return wi

(**) Solving the argmax requires a search over an exponential
space of outputs!

Introduction to Data-Driven Dependency Parsing 44(50)

Structured Learning

Large-Margin Classifiers

Batch (SVMs):

min
1

2
||w||2

such that:

w·f(xt , yt)−w·f(xt , y
′) ≥ 1

∀(xt , yt) ∈ T and y
′ ∈ Ȳt (**)

Online (MIRA):

Training data: T = {(xt , yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N

3. for t : 1..T

4. w(i+1) = arg minw*

∥

∥w* − w(i)
∥

∥

such that:
w · f(xt , yt) − w · f(xt , y

′) ≥ 1
∀y

′ ∈ Ȳt (**)
5. i = i + 1
6. return wi

(**) There are exponential constraints in the size of each input!!

Introduction to Data-Driven Dependency Parsing 45(50)

Structured Learning

Factor the Feature Representations

◮ We can make an assumption that our feature representations
factor relative to the output

◮ Example:
◮ Context Free Parsing:

f(x, y) =
∑

A→BC∈y

f(x, A → BC)

◮ Sequence Analysis – Markov Assumptions:

f(x, y) =

|y|
∑

i=1

f(x, yi−1, yi)

◮ These kinds of factorizations allow us to run algorithms like
CKY and Viterbi to compute the argmax function

Introduction to Data-Driven Dependency Parsing 46(50)

Structured Learning

Structured Perceptron

◮ Exactly like original perceptron

◮ Except now the argmax function uses a factored feature
representation

◮ All of the original analysis for the multiclass perceptron carries
over!!

Introduction to Data-Driven Dependency Parsing 47(50)

Structured Learning

Structured SVMs

min
1

2
||w||2

such that:

w · f(xt ,yt) − w · f(xt ,y
′) ≥ L(yt , y

′)

∀(xt ,yt) ∈ T and y
′ ∈ Ȳt (**)

◮ Still have an exponential # of constraints
◮ Feature factorizations also allow for solutions

◮ Maximum Margin Markov Networks (Taskar et al. ’03)
◮ Structured SVMs (Tsochantaridis et al. ’04)

◮ Note: Old fixed margin of 1 is now a fixed loss L(yt , y
′)

between two structured outputs

Introduction to Data-Driven Dependency Parsing 48(50)

Structured Learning

Online Structured SVMs (or Online MIRA)

Training data: T = {(xt ,yt)}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. w(i+1) = arg minw*

∥

∥w* − w(i)
∥

∥

such that:
w · f(xt ,yt) − w · f(xt ,y

′) ≥ L(yt , y
′)

∀y
′ ∈ Ȳt and y

′ ∈ k-best(xt ,w
(i)) (**)

5. i = i + 1
6. return wi

◮ k-best(xt) is set of outputs with highest scores using weight
vector w(i)

◮ Simple Solution – only consider outputs y
′ ∈ Ȳt that currently

have highest score

Introduction to Data-Driven Dependency Parsing 49(50)

Wrap Up

Main Points of Lecture

◮ Feature representations

◮ Choose feature weights, w, to maximize some function (min
error, max margin)

◮ Batch learning (SVMs) versus online learning (perceptron,
MIRA)

◮ Linear versus Non-linear classifiers

◮ Structured Learning

Introduction to Data-Driven Dependency Parsing 50(50)

References and Further Reading

References and Further Reading

◮ A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics, 22(1).

◮ P. M. Camerini, L. Fratta, and F. Maffioli. 1980.
The k best spanning arborescences of a network. Networks, 10(2):91–110.

◮ Y.J. Chu and T.H. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.

◮ M. Collins and N. Duffy. 2002.
New ranking algorithms for parsing and tagging: Kernels over discrete structures,
and the voted perceptron. In Proc. ACL.

◮ M. Collins. 2002.
Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. EMNLP.

◮ K. Crammer and Y. Singer. 2001.
On the algorithmic implementation of multiclass kernel based vector machines.
JMLR.

◮ K. Crammer and Y. Singer. 2003.
Ultraconservative online algorithms for multiclass problems. JMLR.

Introduction to Data-Driven Dependency Parsing 50(50)

References and Further Reading

◮ K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003.
Online passive aggressive algorithms. In Proc. NIPS.

◮ K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
Online passive aggressive algorithms. JMLR.

◮ J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240.

◮ J. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In Proc.
COLING.

◮ Y. Freund and R.E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Machine Learning,
37(3):277–296.

◮ T. Joachims. 2002.
Learning to Classify Text using Support Vector Machines. Kluwer.

◮ D. Klein and C. Manning. 2004.
Corpus-based induction of syntactic structure: Models of dependency and
constituency. In Proc. ACL.

◮ T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007.
Structured prediction models via the matrix-tree theorem. In Proc. EMNLP.

Introduction to Data-Driven Dependency Parsing 50(50)

References and Further Reading

◮ J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

◮ H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
Classification with string kernels. Journal of Machine Learning Research.

◮ A. McCallum, D. Freitag, and F. Pereira. 2000.
Maximum entropy Markov models for information extraction and segmentation. In
Proc. ICML.

◮ R. McDonald and F. Pereira. 2006.
Online learning of approximate dependency parsing algorithms. In Proc EACL.

◮ R. McDonald and G. Satta. 2007.
On the complexity of non-projective data-driven dependency parsing. In Proc.
IWPT.

◮ R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency parsers. In Proc. ACL.

◮ K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001.
An introduction to kernel-based learning algorithms. IEEE Neural Networks,
12(2):181–201.

◮ M.A. Paskin. 2001.

Introduction to Data-Driven Dependency Parsing 50(50)

References and Further Reading

Cubic-time parsing and learning algorithms for grammatical bigram models.
Technical Report UCB/CSD-01-1148, Computer Science Division, University of
California Berkeley.

◮ K. Sagae and A. Lavie. 2006.
Parser combination by reparsing. In Proc. HLT/NAACL.

◮ F. Sha and F. Pereira. 2003.
Shallow parsing with conditional random fields. In Proc. HLT/NAACL, pages
213–220.

◮ N. Smith and J. Eisner. 2005.
Guiding unsupervised grammar induction using contrastive estimation. In Working
Notes of the International Joint Conference on Artificial Intelligence Workshop on
Grammatical Inference Applications.

◮ D.A. Smith and N.A. Smith. 2007.
Probabilistic models of nonprojective dependency trees. In Proc. EMNLP.

◮ C. Sutton and A. McCallum. 2006.
An introduction to conditional random fields for relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.

◮ R.E. Tarjan. 1977.
Finding optimum branchings. Networks, 7:25–35.

◮ B. Taskar, C. Guestrin, and D. Koller. 2003.

Introduction to Data-Driven Dependency Parsing 50(50)

References and Further Reading

Max-margin Markov networks. In Proc. NIPS.

◮ B. Taskar. 2004.
Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,
Stanford.

◮ I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004.
Support vector learning for interdependent and structured output spaces. In Proc.
ICML.

◮ W.T. Tutte. 1984.
Graph Theory. Cambridge University Press.

◮ D. Yuret. 1998.
Discovery of linguistic relations using lexical attraction. Ph.D. thesis, MIT.

Introduction to Data-Driven Dependency Parsing 50(50)

	From Last Lecture
	Introduction
	Feature Representations
	Linear Classifiers
	Non-Linear Classifiers
	Structured Learning
	Wrap Up
	Appendix
	References and Further Reading

