Introduction to Data-Driven
Dependency Parsing

Introductory Course, ESSLLI 2007
Ryan McDonald! Joakim Nivre?

1Google Inc., New York, USA
E-mail: ryanmcd@google.com

2Uppsala University and Vaxjé University, Sweden
E-mail: nivre@msi.vxu.se

Introduction to Data-Driven Dependency Parsing

From Last Lecture

Formal Conditions on Dependency Graphs

Last Lecture
» For a dependency graph G = (V, A)
With label set L= {/1,..., .}

v

v

G is (weakly) connected:
s fijeV, o
G is acyclic:

v

» If i — j, then not j —* i.

v

G obeys the single-head constraint:
» If i — j, then not i/ — j, for any /" # i.

v

G is projective:
» If i — j, then i —* /, for any i’ such that i</ <j or j<i' <Ii.

Introduction to Data-Driven Dependency Parsing

From Last Lecture

Dependency Graphs as Trees

» Consider a dependency graph G = (V/, A) satisfying:
» G is (weakly) connected:
s Ifi eV, i
» G obeys the single-head constraint:
» If i — j, then not i’ — j, for any i’ # i.
» G obeys the single-root constraint:
» If 3/ such that i — j, then 3i such that i — j/, for any j' # j
> wp = root is always this node
» This dependency graph is by definition a tree

» For the rest of the course we assume that all dependency
graphs are trees

Introduction to Data-Driven Dependency Parsing

From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head

obj pc

nmod sbj nmod |[nmod nmod

o T

Economic news had little effect on financial markets

Introduction to Data-Driven Dependency Parsing

From Last Lecture

Dependency Graphs as Trees

Satisfies: connected, single-head, single-root

P
pred obj pc

nmod sbj nmod |[nmod nmod

o T

root Economic news had little effect on financial markets

Introduction to Data-Driven Dependency Parsing

Introduction

Overview of the Course

Dependency parsing (Joakim)
Machine learning methods (Ryan)
Transition-based models (Joakim)
Graph-based models (Ryan)

Loose ends (Joakim, Ryan):

» Other approaches
» Empirical results
» Available software

vV Yy Vv VY

Introduction to Data-Driven Dependency Parsing

Introduction

Data-Driven Parsing

Data-Driven — Machine Learning
Parameterize a model
Supervised: Learn parameters from annotated data

Unsupervised: Induce parameters from a large corpora

vV vy Vv VY

Data-Driven vs. Grammar-driven

» Can parse all sentences vs. generate specific language
» Data-driven = grammar of X*

Introduction to Data-Driven Dependency P

Introduction

Lecture 2: Qutline

» Feature Representations
» Linear Classifiers
» Perceptron
» Large-Margin Classifiers (SVMs, MIRA)
» Others
» Non-linear Classifiers
» K-NNs and Memory-based Learning
» Kernels
» Structured Learning
» Structured Perceptron
» Large-Margin Perceptron
» Others

Introduction to Data-Driven Dependency Parsing

Introduction

Important Message

» This lecture contains a lot of details

» Not important if you do not follow all proofs and maths
» What is important
» Understand basic representation of data — features
» Understand basic goal and structure of classifiers
» Understand important distinctions: linear vs. non-linear, binary
vs. multiclass, multiclass vs. structured, etc.
» Interested in ML for NLP

» Check out afternoon course “Machine learning methods for
NLP”

Introduction to Data-Driven Dependency Parsing

Feature Representations

Feature Representations

> Input: ¢z € X

» e.g., document or sentence with some words @ = wy ... w,, or
a series of previous actions

» Output: y € Y

» e.g., dependency tree, document class, part-of-speech tags,
next parsing action

» We assume a mapping from x to a high dimensional feature
vector

» f(x): X - R™

» But sometimes it will be easier to think of a mapping from an
input/output pair to a feature vector

> flz,y) : X xY - R"

» For any vector v € R™, let v; be the j value

Introduction to Data-Driven Dependency Parsing 9(50)

Feature Representations

Examples

» x is a document

fi(x) = 1 if & contains the word “interest”
/ "1 0 otherwise

fi(x) = The percentage of words than contain punctuation

» x is a word and y is a part-of-speech tag

1 if x = "bank” and y = Verb
0 otherwise

fi(z,y) = {

Introduction to Data-Driven Dependency Parsing

Feature Representations

Example 2

fo(x) = 1 if contains the word “John”

1= 0 otherwise
_J 1 if & contains the word “Mary"

hi(=) = { 0 otherwise
_ 1 if & contains the word “Harry”

fa(x) = { 0 otherwise
f3(a) = 1 if @ contains the word “likes”

BT 0 otherwise

» x=John likes Mary — f(x) =[1 10 1]
» xz=Mary likes John — f(x) =[1 10 1]
» x=Harry likes Mary — f(x) =[011 1]
» x=Harry likes Harry — f(z) =[00 1 1]

Introduction to Data-Driven Dependency P

Linear Classifiers

Linear Classifiers

» Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

» Let w € R™ be a high dimensional weight vector

» If we assume that w is known, then we can define two kinds
of linear classifiers

» Reminder:
v-v':ZvjxvjeR
J
» Binary Classification:) = {—1,1}

y = sign(w - f(z))
» Multiclass Classification:) = {0,1,..., N}

y = argmax w - f(z,y)
y

Introduction to Data-Driven Dependency Parsing 12(50)

Linear Classifiers

Binary Linear Classifier

Divides all points:
y = sign(w - f(z))

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Multiclass Linear Classifier
Defines regions of space:

y =argmax w - f(z,y)

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Separability

> A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Supervised Learning

> Input: training examples 7 = {(wt,yt)}gl
» Input: feature representation f
» Output: w that maximizes/minimizes some important
function on the training set
» minimize error (Perceptron, SVMs, Boosting)
» maximize likelihood of data (Logistic Regression, CRFs)
» Assumption: The training data is separable

» Not necessary, just makes life easier
» There is a lot of good work in machine learning to tackle the
non-separable case

Introduction to Data-Driven Dependency Parsing 16(50)

Linear Classifiers

Perceptron

» Minimize error
» Binary classification: Y = {—1,1}

w = arg minz 1 —1[y; = sign(w - f(x))]
W
» Multiclass classification: Y = {0,1,..., N}

w = arg minz 1—1[y; = argmaxw - f(x, y)]
w t Y

| 1 pistrue
Lp] = { 0 otherwise

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

Training data: 7 = {(a:t,yt)}gl
1. w®=0;i=0

2. forn:1.N

3 fort:1..T

4 Let y' = arg max,, wl) - f(xz:,y')

5. if y' # y:

6. wi*) = wl) 1 f(z,,) — (1, 9')

7 i=i+1

8. return w'

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

» Given an training instance (¢, y;), define:
r V=Y - {ye}
» A training set 7 is separable with margin v > 0 if there exists
a vector u with [ju|| = 1 such that:

u-f(ze,y:) —u-f(ze,y') >y

for all y' € Yt and lJul| = juJ2

» Assumption: the training set is separable with margin

Introduction to Data-Driven Dependency Parsing 19(50)

Linear Classifiers

Perceptron Learning Algorithm (multiclass)

» Theorem: For any training set separable with a margin of ~,
the following holds for the perceptron algorithm:
RZ

Number of training errors < —
g

where R > ||f(z¢, y:) — f(x¢, y')|| for all (x¢,y:) € T and
y €V

» Thus, after a finite number of training iterations, the error on
the training set will converge to zero

> Let’s prove it! (proof taken from Collins '02)

Introduction to Data-Driven Dependency Parsing 20(50)

Linear Classifiers

Perception Learning Algorithm (multiclass)

Training data: T = {(w¢,)} 7] » w(k=1) are the weights before k"
L wO—o =0 mistake
g f°rf:r :tl:"l"\"T > Stl.;,ppose kth mistake made at the
4, Let y’ = arg max, s w() . f(xe,y’) ™" example, (mt7 yt)
5. ify' Zyr » o =argmax, wk—1 . f(x,y)
6. wl D) = wl) 4 (@, ye) — f(ze, y') > o Y
7 i=i+1 Y # yr
8 return w' > wk) — wlk=1) 4 f(m':7 yt) _ f(m':7 y/)
> Now: u- w) =u-wk=D fu. (f(@, ye) — f(@e, ') > u-wlk—D 4 5
> Now: w(® =0 and u-w(® =0, by induction on k, u-wl¥) > (k — 1)y
» Now: since u-w(k) < |jul| x ||[w®)|| and ||u]| =1 then ||w(¥)|| > (k — 1)y
> Now:
WP = WD 4 IR, ye) — fe,)]+ 20D - (R, ye) — f(e, o)
WO < w2 4 R

(since R > ||f(ze, yt) — f(ze,)|
and w1 - f(a, yr) — wD L f(xy, ') < 0)

Introduction to Data-Driven Dependency Parsing 21(50)

Linear Classifiers

Perception Learning Algorithm (multiclass)

» We have just shown that |[w(¥)|| > (k — 1)y and
W < |lwlk=D]]2 + R?

» By induction on k and since w(®) =0 and ||w(®|]2 =0
[w|? < (k - 1)R?
» Therefore,
(k= 1)%92 < W2 < (k - DR?

» and solving for k
R2
k—1< —
i

» Therefore the number of errors is bounded!

Introduction to Data-Driven Dependency Parsing 22(50)

Margin
Training Testing

Denote the
value of the
margin by ~y

Introduction to Data-Driven Dependency Par:

Linear Classifiers

Margin

» Intuitively maximizing margin makes sense

» More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2

EX —F/FV—————
72 < |T|

» Perceptron: we have shown that:

» If a training set is separable by some margin, the perceptron
will find a w that separates the data
» However, it does not pick a w to maximize the margin!

Introduction to Data-Driven Dependency P 24(50)

Linear Classifiers

Max Margin = Min Norm

Let v >0
Max Margin: Min Norm:
e, min 3 Iw|’?
such that: = such that:
ye(w - f(xz:)) > v ye(w - f(ze)) > 1
Y(xt,y:) €T V(xt,y:) €T

» ||w|| is bound since scaling trivially produces larger margin

ye([Bw] - f(x+)) > B, for some 3 > 1

> Instead of fixing ||w|| we fix the margin v =1

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Support Vector Machines

Binary: Multiclass:
1 o1
min §||w||2 min EHWHQ
such that: such that:
ye(w - f(zy)) > 1 w-f(z,y:) —w-flae,y') > 1
V(zt,y:) €T Y(xe,y:) € T and y' € Yy

Both are quadratic programming problems — a well known convex
optimization problem
Can be solved with out-of-the-box algorithms

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Support Vector Machines

Binary:
1 5
min §||w||
such that:

ye(w-f(x)) > 1

V(xt, yt) € T

» Problem: Sometimes |7 | is far too large

» Thus the number of constraints might
make solving the quadratic programming
problem very difficult

» Most common technique: Sequential
Minimal Optimization (SMO)
» Sparse: solution only depends on support
vectors
T+
G @ +
- +
@ \@® +

Introduction to Data-Driven Dependency Parsing

Linear Classifiers

Margin Infused Relaxed Algorithm (MIRA)

» Another option — maximize margin using an online algorithm
» Batch vs. Online

» Batch — update parameters based on entire training set (e.g.,
SVMs)

» Online — update parameters based on a single training instance
at a time (e.g., Perceptron)

» MIRA can be thought of as a max-margin perceptron or an
online SVM

Introduction to Data-Driven Dependency Parsing 28(50)

MIRA (multiclass)
Online (MIRA):

Batch (SVMs): 17|

Training data: 7 = {(@¢, Y+) }+21
L. w®=0;i=0

1 5
min §||W|| 2. forn:1.N
3. fort:1..T

such that: 4 w(i+1) = arg minw* Hw* _ w(’)H
, such that:

w2 e ye)—wh(@e y') 2 1 w-f(z, y:) —w-f(ze,y') > 1
/ 5 Vy' S)_)t

V(xt,y:) €T and y' € Y 5. i— a1

6. return w'

» MIRA has much smaller optimizations with only | V|
constraints

» Cost: sub-optimal optimization

Introduction to Data-Driven Dependency Parsing 29(50)

Linear Classifiers

Summary

What we have covered

» Feature-based representations
» Linear Classifiers

» Perceptron
» Large-Margin — SVMs (batch) and MIRA (online)

What is next

» Non-linear classifiers

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Non-Linear Classifiers

» Some data sets require more than a linear classifier to be
correctly modeled
> A lot of models out there

» K-Nearest Neighbours
» Decision Trees

» Kernels

» Neural Networks

» Will only discuss a couple due to time constraints

Introduction to Data-Driven Dependency Parsing

K-Nearest Neighbours

» Simplest form: for a given test point x, find k-nearest
neighbours in training set

» Neighbours vote for classification

» Distance is Euclidean distance

o) = \/Z(fj(mt) ~ ()’

. . - +
No linear classifier can - ++<‘B —+
- Point of interest
correctly label data set. But -—_% ‘_lﬁwd ostive Comectly
3-nearest neighbours does. _=-— +

Introduction to Data-Driven Dependency Parsing 32(50)

Non-Linear Classifiers

K-Nearest Neighbours

» A training set 7, distance function d, and value K define a
non-linear classification boundary

Approx 3-NN decision boundary

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

K-Nearest Neighbours

» K-NN is often called a lazy learning algorithm or memory
based learning (MBL)

» K-NN generalized in the Tilburg Memory Based Learning
Package
» Different distance functions
» Different voting schemes for classification
» Tie-breaking
» Memory representations

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Kernels

> A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

d(xr, x,) €R

» Mercer’'s Theorem: for any kernal ¢, there exists an f, such
that:

¢(@r, x) = (1) - f(z/)

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(mt,yr)}'ﬂ
w® =0; i=0
forn: 1..N
fort:1..T
Let y = argmax
ify#ye
witD) = w() 1 (@, ye) — f(e, y)
i=i+1
return w'

Yy w(l) . f(mtv y)

ONO OO

» Each feature function f(x¢,y;) is added and f(x¢,y) is
subtracted to w say o, ; times

> Q¢ is the # of times during learning label y is predicted for
example t

» Thus,
w= Z oy t[f(ze, ye) — F(ze, y)]

t’y

Introduction to Data-Driven Dependency Parsing 36(50)

Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

» We can re-write the argmax function as:

yx = argmaxw() . f(z,, y*)
A

= argmaxzay,t[f(whyt) - f(wt?y)] : f(why*)
y* ty

= argmax Y ay[f(@e,ye) - f(@e, y") — f(@e,y) - f(@e,y7)]
y* ty

= argygrlaxz ay f[0((®e, Y1), (22, 47)) = (24, y), (22, 47))]

ty

» We can then re-write the perceptron algorithm strictly with
kernels

Introduction to Data-Driven Dependency Parsing 37(50)

Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(w@¢, yt)}ltg
1. Vy,tsetay:=0
forn:1..N
fort:1..T

2
3
4. Let y* = argmaxy« >, , oy t[0((@t,), (=1, ¥*)) — d((2e, y), (26, ¥*))]
5 if y* # yt

6 ay*,t:ay*,t—l—l

» Given a new instance

Y= arg max Y ageld((@eye), (2, y7)—((2e, y), (2,y7))]

ty

» But it seems like we have just complicated things???

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Kernels = Tractable Non-Linearity

» A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

» Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

» Thus, kernels allow us to efficiently learn non-linear classifiers

Introduction to Data-Driven Dependency Parsing 39(50)

Non-Linear Classifiers

Linear Classifiers in High Dimension

1

05 R°
2
0 (o}
(o]
O%
-05
fé"%
-1
=1 -05

R — R

(331,372) L (Zl,zz,z3)=($%,\/§$1$2,$§)

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Example: Polynomial Kernel

> f(x) cRM, d >2

> d)(mt, a}s) = (f(a)’t) . f(ms) + 1)d
» O(M) to calculate for any d!!

» But in the original feature space (primal space)
» Consider d =2, M =2, and f(x;) = [x¢,1, X¢,2]

([xe,1, Xe,2] - [xs,1, Xs,2] + 1)?
= (Xt,lxs,l + Xt 2Xs2 + 1)2
= (xe1%61) F (xe.2%5,2)% + 2(xe.1%5.1) + 2(xe.2%s.2)

+2(x¢,1X¢,2Xs,1Xs,2) + (1)2

(F(aee) - f(s) + 1)

which equals:

[(xe,1)% (xe.2)% V2xe,1, V2xe.2, V2xe,1%¢,2, 1] - [(x6,1)% (x5,2)%0 V25,1, V255 2, V2X6,1%5,2, 1]

Introduction to Data-Driven Dependency Parsing

Non-Linear Classifiers

Popular Kernels

» Polynomial kernel

O(@e, ws) = (F(ae) - f(as) + 1)

» Gaussian radial basis kernel (infinite feature space
representation!)

—|[|f(ze) — f(-’Bs)Ilz)
20

¢, T5) = exp(

» String kernels [Lodhi et al. 2002, Collins and Duffy 2002]
» Tree kernels [Collins and Duffy 2002]

Introduction to Data-Driven Dependency Parsing

Structured Learning

Structured Learning

» Sometimes our output space) is not simply a category
» Examples:
» Parsing: for a sentence x,) is the set of possible parse trees
» Sequence tagging: for a sentence x,) is the set of possible
tag sequences, e.g., part-of-speech tags, named-entity tags
» Machine translation: for a source sentence x,) is the set of
possible target language sentences
» Can't we just use our multiclass learning algorithms?

» In all the cases, the size of the set) is exponential in the
length of the input «

» It is often non-trivial to solve our learning algorithms in such
cases

Introduction to Data-Driven Dependency Parsing 43(50)

Structured Learning

Perceptron

Training data: 7 = {(a:t,yt)}gl
1L w®=0;i=0
2. forn:1.N
3 fort:1.T
4 Let y = arg max,, w) - f(x,, y') (¥*)
5. if y' # y:
6. wi) = wl) 1 f(z,, ;) — (s, 9')
7 i=i+1
8. return w’

(**) Solving the argmax requires a search over an exponential
space of outputs!

Introduction to Data-Driven Dependency Parsing

Structured Learning

Large-Margin Classifiers

Online (MIRA):
Batch (SVMs): Training data: 7 = {(azzt,yt)}lg1
1 , 1. w®=0;i=0
min §||W|| 2. forn:1..N
3. fort:1..T
such that: 4 wlitl) — arg minw* HW* —_ W(i)H

such that:
w - f(wt’ yt) —w- f(wtv yl) > 1
vy € 9 (*)
i=i+1
return w'

W'f(mh yt)_w'f(xh yl) 2 1

Y(xe,y:) € T and 3y € V; (¥*)

oo

(**) There are exponential constraints in the size of each input!!

Introduction to Data-Driven Dependency Parsing 45(50)

Structured Learning

Factor the Feature Representations

» We can make an assumption that our feature representations
factor relative to the output
» Example:
» Context Free Parsing:

flz,y) = Z f(x, A — BC)

A—BCey
» Sequence Analysis — Markov Assumptions:

ly|

f(z,y) = > f(x,yi1,y)

i=1

» These kinds of factorizations allow us to run algorithms like
CKY and Viterbi to compute the argmax function

Introduction to Data-Driven Dependency Parsing 46(50)

Structured Learning

Structured Perceptron

» Exactly like original perceptron

» Except now the argmax function uses a factored feature
representation

» All of the original analysis for the multiclass perceptron carries

over!l

Introduction to Data-Driven Dependency Parsing

Structured Learning

Structured SVMs

1
min §||w||2
such that:
W - f(mh yt) —W- f(mh y/) 2 £(_yl‘.‘7.y/)
Y(xs,y:) €T and y' € V; (¥%)

» Still have an exponential # of constraints
» Feature factorizations also allow for solutions
» Maximum Margin Markov Networks (Taskar et al. '03)
» Structured SVMs (Tsochantaridis et al. '04)
» Note: Old fixed margin of 1 is now a fixed loss L(yz, y’)
between two structured outputs

Introduction to Data-Driven Dependency Parsing 48(50)

Structured Learning

Online Structured SVMs (or Online MIRA)

Training data: 7 = {(wt,yt)}gl
1. w0 = 0;/1=0
2. forn:1.N
3. fort:1..T
4 wlith) = arg min,, Hw* — w(i)“
such that:
wf(@e, ye) —w-flze,y') = L(ye.y')
Vy' € Y and oy € k-best(z;, w()) (*¥*)
5. i=i+1
6. return w'

> k-best(x;) is set of outputs with highest scores using weight
vector w(/)

» Simple Solution — only consider outputs y’ €), that currently
have highest score

Introduction to Data-Driven Dependency Parsing 49(50)

Wrap Up

Main Points of Lecture

v

Feature representations

Choose feature weights, w, to maximize some function (min
error, max margin)

v

v

Batch learning (SVMs) versus online learning (perceptron,
MIRA)

Linear versus Non-linear classifiers

v

v

Structured Learning

Introduction to Data-Driven Dependency Parsing

References and Further Reading

References and Further Reading

> A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics, 22(1).

» P. M. Camerini, L. Fratta, and F. Maffioli. 1980.
The k best spanning arborescences of a network. Networks, 10(2):91-110.

» Y.J. Chu and T.H. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396—1400.

» M. Collins and N. Duffy. 2002.
New ranking algorithms for parsing and tagging: Kernels over discrete structures,
and the voted perceptron. In Proc. ACL.

> M. Collins. 2002.
Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. EMNLP.

» K. Crammer and Y. Singer. 2001.
On the algorithmic implementation of multiclass kernel based vector machines.
JMLR.

» K. Crammer and Y. Singer. 2003.
Ultraconservative online algorithms for multiclass problems. JMLR.

Introduction to Data-Driven Dependency Parsing

References and Further Reading

>

>

>

K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003.
Online passive aggressive algorithms. In Proc. NIPS.

K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
Online passive aggressive algorithms. JMLR.

J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233-240.

J. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In Proc.
COLING.

Y. Freund and R.E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Machine Learning,
37(3):277-296.

T. Joachims. 2002.
Learning to Classify Text using Support Vector Machines. Kluwer.

D. Klein and C. Manning. 2004.
Corpus-based induction of syntactic structure: Models of dependency and
constituency. In Proc. ACL.

T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007.
Structured prediction models via the matrix-tree theorem. In Proc. EMNLP.

Introduction to Data-Driven Dependency Parsing

References and Further Reading

P> J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

» H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
Classification with string kernels. Journal of Machine Learning Research.

» A. McCallum, D. Freitag, and F. Pereira. 2000.
Maximum entropy Markov models for information extraction and segmentation. In
Proc. ICML.

» R. McDonald and F. Pereira. 2006.
Online learning of approximate dependency parsing algorithms. In Proc EACL.

» R. McDonald and G. Satta. 2007.
On the complexity of non-projective data-driven dependency parsing. In Proc.
IWPT.

» R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency parsers. In Proc. ACL.

> K.R. Miiller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. 2001.
An introduction to kernel-based learning algorithms. IEEE Neural Networks,
12(2):181-201.

> M.A. Paskin. 2001.

Introduction to Data-Driven Dependency Parsing 5

References and Further Reading

Cubic-time parsing and learning algorithms for grammatical bigram models.
Technical Report UCB/CSD-01-1148, Computer Science Division, University of
California Berkeley.

» K. Sagae and A. Lavie. 2006.
Parser combination by reparsing. In Proc. HLT/NAACL.

» F. Sha and F. Pereira. 2003.
Shallow parsing with conditional random fields. In Proc. HLT/NAACL, pages
213-220.

» N. Smith and J. Eisner. 2005.
Guiding unsupervised grammar induction using contrastive estimation. In Working
Notes of the International Joint Conference on Artificial Intelligence Workshop on
Grammatical Inference Applications.

> D.A. Smith and N.A. Smith. 2007.
Probabilistic models of nonprojective dependency trees. In Proc. EMNLP.

» C. Sutton and A. McCallum. 2006.
An introduction to conditional random fields for relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.

» R.E. Tarjan. 1977.
Finding optimum branchings. Networks, 7:25-35.

> B. Taskar, C. Guestrin, and D. Koller. 2003.

Introduction to Data-Driven Dependency P

References and Further Reading

>

>

Max-margin Markov networks. In Proc. NIPS.

B. Taskar. 2004.
Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,
Stanford.

|. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004.
Support vector learning for interdependent and structured output spaces. In Proc.
ICML.

W.T. Tutte. 1984.
Graph Theory. Cambridge University Press.

D. Yuret. 1998.
Discovery of linguistic relations using lexical attraction. Ph.D. thesis, MIT.

Introduction to Data-Driven Dependency Par:

	From Last Lecture
	Introduction
	Feature Representations
	Linear Classifiers
	Non-Linear Classifiers
	Structured Learning
	Wrap Up
	Appendix
	References and Further Reading

